Steinbeck Lea, Paul Richard, Litke Julia, Karkoszka Isabel, Wiese G Philip, Linkhorst John, De Laporte Laura, Wessling Matthias
Chemical Process Engineering AVT.CVT, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.
DWI - Leibniz-Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany.
Small. 2025 Jan;21(3):e2407311. doi: 10.1002/smll.202407311. Epub 2024 Nov 20.
Recent studies show the importance of hydrogel geometry for various applications, such as encoding, micromachines, or tissue engineering. However, fabricating hydrogel structures with micrometer-sized features, advanced geometry, and precise control of porosity remains challenging. This work presents hierarchically structured hydrogels, so-called hydrogel patches, with internally deviating regions on a micron-scale. These regions are defined in a one-step, high-throughput fabrication process via stop-flow lithography. Between the specified projection pattern during fabrication, an interconnecting lower crosslinked and more porous hydrogel network forms, resulting in at least two degrees of crosslinking within the patches. A detailed investigation of patch formation is performed for two material systems and pattern variations, revealing basic principles for reliable patch formation. In addition to the two defined crosslinked regions, further regions are implemented in the patches by adapting the pattern accordingly. The variations in pattern geometry impact the mechanical characteristics of the hydrogel patches, which display pattern-dependent compression behavior due to predefined compression points. Cell culture on patches, as one possible application, reveals that the patch pattern determines the cell area of L929 mouse fibroblasts. These results introduce hierarchically structured hydrogel patches as a promising and versatile platform system with high customizability.
最近的研究表明水凝胶几何形状在各种应用中的重要性,如编码、微机械或组织工程。然而,制造具有微米级特征、先进几何形状和精确孔隙率控制的水凝胶结构仍然具有挑战性。这项工作展示了具有分层结构的水凝胶,即所谓的水凝胶贴片,其内部具有微米级的偏差区域。这些区域是通过停流光刻在一步高通量制造过程中定义的。在制造过程中指定的投影图案之间,形成了一个相互连接的较低交联度且孔隙率更高的水凝胶网络,从而在贴片中产生至少两个交联度。针对两种材料体系和图案变化对贴片形成进行了详细研究,揭示了可靠贴片形成的基本原理。除了两个定义的交联区域外,通过相应地调整图案,在贴片中还实现了更多区域。图案几何形状的变化会影响水凝胶贴片的力学特性,由于预定义的压缩点,贴片呈现出与图案相关的压缩行为。作为一种可能的应用,在贴片上进行细胞培养表明,贴片图案决定了L929小鼠成纤维细胞的细胞面积。这些结果表明,分层结构的水凝胶贴片是一个有前途的、通用的平台系统,具有高度的可定制性。