Sereni J G, Giovannini M, Gómez Berisso M, Gastaldo F
Low Temperature Div. CAB-CNEA, Conicet, 8400 Bariloche, Argentina.
J Phys Condens Matter. 2016 Nov 30;28(47):475601. doi: 10.1088/0953-8984/28/47/475601. Epub 2016 Sep 16.
Low temperature thermal and magnetic measurements performed on ferro-magneticl (FM) alloys of composition Ce2.15(Pd1-x Ag x )1.95In0.9 are presented. Pd substitution by Ag depresses [Formula: see text] from 4.1 K down to 1.1 K for x = 0.5, which is related to the increase of band electrons, with a critical concentration extrapolated to [Formula: see text]. The [Formula: see text] decrease is accompanied by a weakening of the magnetization of the FM phase. At high temperature (T > 30 K) the inverse magnetic susceptibility reveals the presence of robust magnetic moments ([Formula: see text] [Formula: see text]), whereas the low value of the Curie-Weiss temperature [Formula: see text] K excludes any relevant effect from Kondo screening. The specific heat jump at [Formula: see text] decreases accordingly, while an anomaly emerges at a fixed temperature [Formula: see text] K. This unexpected anomaly does not show any associated sign of magnetism checked by AC-susceptibility measurements. Since the total magnetic entropy (evaluated around [Formula: see text]) practically does not change with Ag concentration, the transference of degrees of freedom from the FM component to the non-magnetic T (*) anomaly is deduced. The origin of this anomaly is attributed to an arising magnetic frustration of the ground state and the consequent entropy bottleneck produced by the divergent increasing of density of excitations at low temperature.
本文展示了对成分Ce2.15(Pd1-x Ag x )1.95In0.9的铁磁(FM)合金进行的低温热学和磁学测量。对于x = 0.5,用Ag替代Pd会使[公式:见原文]从4.1 K降至1.1 K,这与能带电子的增加有关,外推得到的临界浓度为[公式:见原文]。[公式:见原文]的降低伴随着FM相磁化强度的减弱。在高温(T > 30 K)下,逆磁导率揭示了存在强磁矩([公式:见原文] [公式:见原文]),而居里 - 外斯温度[公式:见原文] K的低值排除了近藤屏蔽的任何相关效应。[公式:见原文]处的比热跃变相应减小,而在固定温度[公式:见原文] K处出现异常。通过交流磁化率测量检查,这种意外的异常没有显示出任何相关的磁性迹象。由于总磁熵(在[公式:见原文]附近评估)实际上不随Ag浓度变化,推断出自由度从FM成分转移到了非磁性的T (*)异常。这种异常的起源归因于基态出现的磁阻挫以及低温下激发密度发散增加所产生的熵瓶颈。