Suppr超能文献

温度而非土壤特性控制着凋落物的分解,从而影响未来的土壤碳。

Litter decay controlled by temperature, not soil properties, affecting future soil carbon.

机构信息

Agriculture & Agri-Food Canada (AAFC) Research & Development Centre, Central Experimental Farm, Ottawa, ON, K1A 0C6, Canada.

AAFC Research & Development Centre, Lethbridge, AB, T1J 4B1, Canada.

出版信息

Glob Chang Biol. 2017 Apr;23(4):1725-1734. doi: 10.1111/gcb.13502. Epub 2016 Oct 8.

Abstract

Widespread global changes, including rising atmospheric CO concentrations, climate warming and loss of biodiversity, are predicted for this century; all of these will affect terrestrial ecosystem processes like plant litter decomposition. Conversely, increased plant litter decomposition can have potential carbon-cycle feedbacks on atmospheric CO levels, climate warming and biodiversity. But predicting litter decomposition is difficult because of many interacting factors related to the chemical, physical and biological properties of soil, as well as to climate and agricultural management practices. We applied C-labelled plant litter to soil at ten sites spanning a 3500-km transect across the agricultural regions of Canada and measured its decomposition over five years. Despite large differences in soil type and climatic conditions, we found that the kinetics of litter decomposition were similar once the effect of temperature had been removed, indicating no measurable effect of soil properties. A two-pool exponential decay model expressing undecomposed carbon simply as a function of thermal time accurately described kinetics of decomposition. (R  = 0.94; RMSE = 0.0508). Soil properties such as texture, cation exchange capacity, pH and moisture, although very different among sites, had minimal discernible influence on decomposition kinetics. Using this kinetic model under different climate change scenarios, we projected that the time required to decompose 50% of the litter (i.e. the labile fractions) would be reduced by 1-4 months, whereas time required to decompose 90% of the litter (including recalcitrant fractions) would be reduced by 1 year in cooler sites to as much as 2 years in warmer sites. These findings confirm quantitatively the sensitivity of litter decomposition to temperature increases and demonstrate how climate change may constrain future soil carbon storage, an effect apparently not influenced by soil properties.

摘要

预计本世纪全球将发生广泛变化,包括大气 CO2 浓度升高、气候变暖和生物多样性丧失;所有这些都将影响陆地生态系统过程,如植物凋落物分解。相反,增加植物凋落物分解可能对大气 CO2 水平、气候变暖以及生物多样性产生潜在的碳循环反馈。但是,由于与土壤的化学、物理和生物特性以及气候和农业管理实践有关的许多相互作用的因素,预测凋落物分解是困难的。我们在跨越加拿大农业区 3500 公里的 10 个地点的土壤中应用了 14C 标记的植物凋落物,并在五年内测量了其分解。尽管土壤类型和气候条件差异很大,但我们发现,一旦去除温度的影响,凋落物分解的动力学是相似的,表明土壤特性没有可测量的影响。一个表达未分解碳的两池指数衰减模型,简单地作为热时间的函数来描述分解动力学。(R=0.94;RMSE=0.0508)。尽管站点之间的质地、阳离子交换容量、pH 值和水分等土壤特性差异很大,但对分解动力学的影响极小。在不同的气候变化情景下使用这个动力学模型,我们预测,分解 50%的凋落物(即易分解部分)所需的时间将减少 1-4 个月,而在较凉爽的地点,分解 90%的凋落物(包括抗分解部分)所需的时间将减少 1 年,在较温暖的地点甚至减少 2 年。这些发现定量证实了凋落物分解对温度升高的敏感性,并表明气候变化如何可能限制未来土壤碳储存,这种效应显然不受土壤特性的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验