Suppr超能文献

线粒体细胞色素c氧化酶详细动力学建模:催化机制与一氧化氮抑制作用

Modeling the detailed kinetics of mitochondrial cytochrome c oxidase: Catalytic mechanism and nitric oxide inhibition.

作者信息

Pannala Venkat R, Camara Amadou K S, Dash Ranjan K

机构信息

Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.

Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin.

出版信息

J Appl Physiol (1985). 2016 Nov 1;121(5):1196-1207. doi: 10.1152/japplphysiol.00524.2016. Epub 2016 Sep 15.

Abstract

Cytochrome c oxidase (CcO) catalyzes the exothermic reduction of O to HO by using electrons from cytochrome c, and hence plays a crucial role in ATP production. Although details on the enzyme structure and redox centers involved in O reduction have been known, there still remains a considerable ambiguity on its mechanism of action, e.g., the number of sequential electrons donated to O in each catalytic step, the sites of protonation and proton pumping, and nitric oxide (NO) inhibition mechanism. In this work, we developed a thermodynamically constrained mechanistic mathematical model for the catalytic action of CcO based on available kinetic data. The model considers a minimal number of redox centers on CcO and couples electron transfer and proton pumping driven by proton motive force (PMF), and accounts for the inhibitory effects of NO on the reaction kinetics. The model is able to fit well all the available kinetic data under diverse experimental conditions with a physiologically realistic unique parameter set. The model predictions show that: 1) the apparent K of O varies considerably and increases from fully reduced to fully oxidized cytochrome c depending on pH and the energy state of mitochondria, and 2) the intermediate enzyme states depend on pH and cytochrome c redox fraction and play a central role in coupling mitochondrial respiration to PMF. The developed CcO model can easily be integrated into existing mitochondrial bioenergetics models to understand the role of the enzyme in controlling oxidative phosphorylation in normal and disease conditions.

摘要

细胞色素c氧化酶(CcO)利用细胞色素c提供的电子催化氧气放热还原为水,因此在ATP生成过程中起着关键作用。尽管氧气还原过程中涉及的酶结构和氧化还原中心的细节已为人所知,但其作用机制仍存在相当大的模糊性,例如每个催化步骤中依次提供给氧气的电子数量、质子化和质子泵浦的位点以及一氧化氮(NO)的抑制机制。在这项工作中,我们基于现有的动力学数据,为CcO的催化作用建立了一个热力学约束的机理数学模型。该模型考虑了CcO上最少数量的氧化还原中心,并将质子动力(PMF)驱动的电子转移和质子泵浦耦合起来,同时考虑了NO对反应动力学的抑制作用。该模型能够用一组生理上现实的独特参数,很好地拟合各种实验条件下所有可用的动力学数据。模型预测结果表明:1)氧气的表观解离常数(K)变化很大,并且根据pH值和线粒体的能量状态,从完全还原的细胞色素c到完全氧化的细胞色素c会增大;2)中间酶状态取决于pH值和细胞色素c的氧化还原分数,并且在将线粒体呼吸与PMF耦合中起核心作用。所建立的CcO模型可以很容易地整合到现有的线粒体生物能量学模型中,以了解该酶在正常和疾病状态下控制氧化磷酸化过程中的作用。

相似文献

引用本文的文献

3
Revisiting reactive oxygen species production in hypoxia.重新审视缺氧状态下活性氧的产生
Pflugers Arch. 2024 Sep;476(9):1423-1444. doi: 10.1007/s00424-024-02986-1. Epub 2024 Jul 3.
5
Carbon Monoxide Poisoning: From Microbes to Therapeutics.一氧化碳中毒:从微生物到治疗学。
Annu Rev Med. 2024 Jan 29;75:337-351. doi: 10.1146/annurev-med-052422-020045. Epub 2023 Aug 15.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验