Johanson Conrad, Johanson Nancy
Departments of Neurosurgery and Physiology Alpert Medical School at Brown University, 593 Eddy Street, Providence, RI, 02903, USA.
CNS Neurol Disord Drug Targets. 2016;15(9):1151-1180. doi: 10.2174/1871527315666160915120758.
Robust modeling of CNS transport integrates molecular fluxes at the microvascular blood-brain barrier and epithelial choroid plexus blood-cerebrospinal fluid (CSF) barrier. Normal activity of solute transporters, channels and aquaporins, in the cerebral endothelium and choroidal epithelium, sets the microenvironment composition for neurons and glia. Conversely, perturbed transport/permeability at the barrier interfaces causes interstitial fluid dyshomeostasis (e.g. edema) arising in neural disorders. Critically-important transependymal solute/water distribution between brain and CSF needs more attention. This treatise encourages procuring transport data simultaneously for blood-brain barrier, blood-CSF barrier and CSF. In situ perfusion and multicompartmental analyses (tracers, microdialysis) provide dynamic assessments of molecular transfer among various CNS regions. Diffusion, active transport and convection are distorted by disease- and age-associated alterations in barrier permeability and CSF turnover (sink action). Clinical complications result from suboptimal conveyance of micronutrients (folate), catabolites (β-amyloid) and therapeutic agents (antibiotics) within the CNS. Neurorestorative therapies for stroke, traumatic brain injury, multiple sclerosis and brain tumors are facilitated by insight on molecular and cellular trafficking through the choroid plexus-CSF nexus. Knowledge is needed about fluxes of growth factors, neurotrophins, hormones and leukocytes from ventricular CSF into the hippocampus, subventricular zone and hypothalamus. CSF and brain removal of potentially toxic catabolites and neuropeptides merits further investigation to manage the degeneration of Alzheimer's disease and normal pressure hydrocephalus. Novel therapies will rely on delineating peptide and drug distributions across the blood-brain barrier and choroid plexus-CSF, and how they modulate the intervening neural-glial networks and neurogenic sites. Multicompartmental transport modeling is key to devising specific pharmacologic targeting and thus impactful CSF translational research for CNS disorders.
中枢神经系统(CNS)转运的稳健建模整合了微血管血脑屏障和上皮脉络丛血脑脊液(CSF)屏障处的分子通量。脑内皮和脉络膜上皮中溶质转运体、通道和水通道蛋白的正常活性为神经元和神经胶质细胞设定了微环境组成。相反,屏障界面处转运/通透性的扰动会导致神经疾病中出现间质液动态平衡失调(如水肿)。脑与脑脊液之间至关重要的跨室管膜溶质/水分布需要更多关注。本论文鼓励同时获取血脑屏障、血脑脊液屏障和脑脊液的转运数据。原位灌注和多隔室分析(示踪剂、微透析)可对中枢神经系统各区域之间的分子转移进行动态评估。扩散、主动转运和对流会因屏障通透性和脑脊液周转率(汇作用)的疾病和年龄相关变化而受到影响。临床并发症源于中枢神经系统内微量营养素(叶酸)、分解代谢物(β-淀粉样蛋白)和治疗药物(抗生素)的转运不理想。通过了解分子和细胞通过脉络丛-脑脊液连接的运输情况,有助于对中风、创伤性脑损伤、多发性硬化症和脑肿瘤进行神经修复治疗。需要了解生长因子、神经营养因子、激素和白细胞从脑室脑脊液进入海马体、脑室下区和下丘脑的通量。脑脊液和脑清除潜在有毒分解代谢物和神经肽值得进一步研究,以应对阿尔茨海默病和正常压力脑积水的退化。新疗法将依赖于描绘肽和药物在血脑屏障和脉络丛-脑脊液中的分布,以及它们如何调节中间的神经胶质网络和神经发生部位。多隔室转运建模是设计特定药物靶向的关键,从而对中枢神经系统疾病进行有影响力的脑脊液转化研究。