Suppr超能文献

欺骗检测:实时在线和离线交流环境中信任水平与观点采择的关系

Deception Detection: The Relationship of Levels of Trust and Perspective Taking in Real-Time Online and Offline Communication Environments.

作者信息

Friend Catherine, Fox Hamilton Nicola

机构信息

Institute of Art , Design and Technology Dun Laoghaire, Dublin, Republic of Ireland .

出版信息

Cyberpsychol Behav Soc Netw. 2016 Sep;19(9):532-7. doi: 10.1089/cyber.2015.0643.

Abstract

Where humans have been found to detect lies or deception only at the rate of chance in offline face-to-face communication (F2F), computer-mediated communication (CMC) online can elicit higher rates of trust and sharing of personal information than F2F. How do levels of trust and empathetic personality traits like perspective taking (PT) relate to deception detection in real-time CMC compared to F2F? A between groups correlational design (N = 40) demonstrated that, through a paired deceptive conversation task with confederates, levels of participant trust could predict accurate detection online but not offline. Second, participant PT abilities could not predict accurate detection in either conversation medium. Finally, this study found that conversation medium also had no effect on deception detection. This study finds support for the effects of the Truth Bias and online disinhibition in deception, and further implications in law enforcement are discussed.

摘要

在离线面对面交流(F2F)中,人们发现人类检测谎言或欺骗的准确率仅为随机水平,而在线计算机介导交流(CMC)能够引发比面对面交流更高的信任度和个人信息分享率。与面对面交流相比,信任水平和诸如换位思考(PT)等共情人格特质如何与实时计算机介导交流中的欺骗检测相关?一项组间相关设计(N = 40)表明,通过与同谋进行配对欺骗性对话任务,参与者的信任水平能够预测在线时的准确检测,但离线时则不能。其次,参与者的换位思考能力在两种对话媒介中均无法预测准确检测。最后,本研究发现对话媒介对欺骗检测也没有影响。本研究为欺骗中的真相偏差和在线去抑制效应提供了支持,并讨论了其在执法方面的进一步影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验