文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

SnO纳米颗粒对细菌毒性及其膜损伤的尺寸效应。

Size effect of SnO nanoparticles on bacteria toxicity and their membrane damage.

作者信息

Chávez-Calderón Adriana, Paraguay-Delgado Francisco, Orrantia-Borunda Erasmo, Luna-Velasco Antonia

机构信息

Centro de Investigación en Materiales Avanzados, Departamento de medio ambiente y energía, Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31136 Chihuahua, Chih., Mexico.

出版信息

Chemosphere. 2016 Dec;165:33-40. doi: 10.1016/j.chemosphere.2016.09.003. Epub 2016 Sep 14.


DOI:10.1016/j.chemosphere.2016.09.003
PMID:27639075
Abstract

Semiconductor SnO nanoparticles (NPs) are being exploited for various applications, including those in the environmental context. However, toxicity studies of SnO NPs are very limited. This study evaluated the toxic effect of two sizes of spherical SnO NPs (2 and 40 nm) and one size of flower-like SnO NPs (800 nm) towards the environmental bacteria E. coli and B. subtilis. SnO NPs were synthesized using a hydrothermal or calcination method and they were well characterized prior to toxicity assessment. To evaluate toxicity, cell viability and membrane damage were determined in cells (1 × 10 CFU mL) exposed to up to 1000 mg L of NPs, using the plate counting method and confocal laser scanning microscopy. Spherical NPs of smaller primary size (E2) had the lowest hydrodynamic size (226 ± 96 nm) and highest negative charge (-30.3 ± 10.1 mV). Smaller spherical NPs also showed greatest effect on viability (IC > 500 mg L) and membrane damage of B. subtilis, whereas E. coli was unaffected. Scanning electron microscopy confirmed the membrane damage of exposed B. subtilis and also exhibited the attachment of E2 NPs to the cell surface, as well as the elongation of cells. It was also apparent that toxicity was caused solely by NPs, as released Sn was not toxic to B. subtilis. Thus, surface charge interaction between negatively charged SnO NPs and positively charged molecules on the membrane of the Gram positive B. subtilis was indicated as the key mechanism related to toxicity of NPs.

摘要

半导体二氧化锡纳米颗粒(NPs)正被应用于各种领域,包括环境领域。然而,关于二氧化锡纳米颗粒的毒性研究非常有限。本研究评估了两种尺寸的球形二氧化锡纳米颗粒(2纳米和40纳米)以及一种尺寸的花状二氧化锡纳米颗粒(800纳米)对环境细菌大肠杆菌和枯草芽孢杆菌的毒性作用。二氧化锡纳米颗粒采用水热法或煅烧法合成,并在毒性评估前进行了充分表征。为了评估毒性,使用平板计数法和共聚焦激光扫描显微镜,在暴露于高达1000毫克/升纳米颗粒的细胞(1×10CFU/毫升)中测定细胞活力和膜损伤。初级尺寸较小的球形纳米颗粒(E2)具有最低的流体动力学尺寸(226±96纳米)和最高的负电荷(- 30.3±10.1毫伏)。较小的球形纳米颗粒对枯草芽孢杆菌的活力(IC>500毫克/升)和膜损伤也表现出最大影响,而大肠杆菌则不受影响。扫描电子显微镜证实了暴露的枯草芽孢杆菌的膜损伤,还显示了E2纳米颗粒附着在细胞表面以及细胞伸长。同样明显的是,毒性仅由纳米颗粒引起,因为释放的锡对枯草芽孢杆菌无毒。因此,带负电荷的二氧化锡纳米颗粒与革兰氏阳性枯草芽孢杆菌膜上带正电荷分子之间的表面电荷相互作用被认为是与纳米颗粒毒性相关的关键机制。

相似文献

[1]
Size effect of SnO nanoparticles on bacteria toxicity and their membrane damage.

Chemosphere. 2016-12

[2]
Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus.

Sci Total Environ. 2011-2-18

[3]
Effect of ZnO and TiO₂ nanoparticles preilluminated with UVA and UVB light on Escherichia coli and Bacillus subtilis.

Appl Microbiol Biotechnol. 2012-5-22

[4]
Bacterial toxicity comparison between nano- and micro-scaled oxide particles.

Environ Pollut. 2009-5

[5]
Antimicrobial effects of zero-valent iron nanoparticles on gram-positive Bacillus strains and gram-negative Escherichia coli strains.

J Nanobiotechnology. 2017-11-3

[6]
ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.

PLoS One. 2015-6-3

[7]
Assay-dependent effect of silver nanoparticles to Escherichia coli and Bacillus subtilis.

Appl Microbiol Biotechnol. 2011-10-11

[8]
Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter.

Water Res. 2013-3-22

[9]
Cytotoxicity study of Piper nigrum seed mediated synthesized SnO nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines.

J Photochem Photobiol B. 2017-1

[10]
Co-precipitation synthesis and characterization of Co doped SnO NPs, HSA interaction via various spectroscopic techniques and their antimicrobial and photocatalytic activities.

Int J Biol Macromol. 2017-1

引用本文的文献

[1]
Controlled Synthesis of SnO Nanocrystals with Tunable Band Gaps.

Precis Chem. 2025-3-17

[2]
Preparation of LaSnO, MgSnO, and MgSn(OH) and their antiviral/antibacterial activities.

J Mater Sci Mater Med. 2025-8-6

[3]
Targeted specific inhibition of bacterial and species by mesoporous Ag/Sn-SnO composite nanoparticles: and investigation.

RSC Adv. 2022-1-5

[4]
Comparative evaluation of nano and bulk tin dioxide cytotoxicity on dermal fibroblasts by real-time impedance-based and conventional methods.

Turk J Biol. 2018-10-25

[5]
ZnO nanoparticles modulate the ionic transport and voltage regulation of lysenin nanochannels.

J Nanobiotechnology. 2017-12-16

[6]
Oxidative damage to Pseudomonas aeruginosa ATCC 27833 and Staphylococcus aureus ATCC 24213 induced by CuO-NPs.

Environ Sci Pollut Res Int. 2017-8-8

[7]
Erratum to: Development of the Return-to-Work Obstacles and Self-Efficacy Scale (ROSES) and Validation with Workers Suffering from a Common Mental Disorder or Musculoskeletal Disorder.

J Occup Rehabil. 2017-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索