文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Comparative evaluation of nano and bulk tin dioxide cytotoxicity on dermal fibroblasts by real-time impedance-based and conventional methods.

作者信息

Şeker Şükran

机构信息

Ankara University, Stem Cell Institute , Ankara , Turkey.

Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Faculty of Science, Ankara University , Ankara , Turkey.

出版信息

Turk J Biol. 2018 Oct 25;42(5):435-446. doi: 10.3906/biy-1802-97. eCollection 2018.


DOI:10.3906/biy-1802-97
PMID:30930627
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6438124/
Abstract

In this study, the possible cellular effects of tin dioxide (SnO) nanoparticles, together with its bulk form, on mouse dermal fibroblasts (DFs) were revealed using in vitro assays. Particle characterizations were carried out with AFM, Braun-Emmet-Teller, and DLS analyses. The cells were treated with nano and bulk SnO at concentrations of 0.1, 1, 10, 50, and 100 μg/mL for 6, 24, and 48 h. At the end of the exposure periods, the morphology, viability, particle uptake, and membrane leakage statuses of the cells were evaluated. Furthermore, real-time monitoring of cell responses was performed by using an impedance-based label-free system. Findings showed that at concentrations of 0.1-10 μg/mL, cells had similar doubling time to that of control cells (20.4 ± 2.6 h), while the doubling time of cells exposed to 100 μg/mL of nano and bulk SnO increased slightly (P ˃ 0.05) to 25.1 ± 3.9 h and 26.2 ± 5.9 h, respectively. The results indicated that DFs exhibited a similar toxicity response to nano and bulk SnO; thus, 50 and 100 μg/mL of nano and bulk SnO had mild toxic effects on DFs. In conclusion, this study provides information and insight necessary for the safe use of SnO in medical and consumer products.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f14/6438124/c4a3db17d87a/turkjbio-42-435-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f14/6438124/82d173ca9d1d/turkjbio-42-435-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f14/6438124/07934dc30d90/turkjbio-42-435-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f14/6438124/f3a5207ae788/turkjbio-42-435-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f14/6438124/d0fc0a7eaab0/turkjbio-42-435-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f14/6438124/ac3f5e1c9f16/turkjbio-42-435-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f14/6438124/4d771b590c96/turkjbio-42-435-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f14/6438124/6601d6184b52/turkjbio-42-435-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f14/6438124/c4a3db17d87a/turkjbio-42-435-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f14/6438124/82d173ca9d1d/turkjbio-42-435-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f14/6438124/07934dc30d90/turkjbio-42-435-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f14/6438124/f3a5207ae788/turkjbio-42-435-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f14/6438124/d0fc0a7eaab0/turkjbio-42-435-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f14/6438124/ac3f5e1c9f16/turkjbio-42-435-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f14/6438124/4d771b590c96/turkjbio-42-435-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f14/6438124/6601d6184b52/turkjbio-42-435-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f14/6438124/c4a3db17d87a/turkjbio-42-435-g008.jpg

相似文献

[1]
Comparative evaluation of nano and bulk tin dioxide cytotoxicity on dermal fibroblasts by real-time impedance-based and conventional methods.

Turk J Biol. 2018-10-25

[2]
In vitro cytotoxicity of hydrothermally synthesized ZnO nanoparticles on human periodontal ligament fibroblast and mouse dermal fibroblast cells.

Toxicol In Vitro. 2014-12

[3]
A comparative study on the in vitro cytotoxic responses of two mammalian cell types to fullerenes, carbon nanotubes and iron oxide nanoparticles.

Drug Chem Toxicol. 2017-4

[4]
Oxidative stress mediated cytotoxicity of tin (IV) oxide (SnO) nanoparticles in human breast cancer (MCF-7) cells.

Colloids Surf B Biointerfaces. 2018-8-20

[5]
Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.

Toxicol Sci. 2007-5

[6]
Real-time cell-microelectronic sensing of nanoparticle-induced cytotoxic effects.

Anal Chim Acta. 2013-6-18

[7]
Evaluating the cytotoxicity of tin dioxide nanofibers.

J Environ Sci Health A Tox Hazard Subst Environ Eng. 2018

[8]
Study on preparation of SnO-TiO/Nano-graphite composite anode and electro-catalytic degradation of ceftriaxone sodium.

Chemosphere. 2016-12

[9]
Comparative cellular toxicity of titanium dioxide nanoparticles on human astrocyte and neuronal cells after acute and prolonged exposure.

Neurotoxicology. 2015-5

[10]
Effects of titanium dioxide nanoparticles on the inhibition of cellular activity in human Tenon's fibroblasts under UVA exposure.

Graefes Arch Clin Exp Ophthalmol. 2018-10

本文引用的文献

[1]
The species origin of the serum in the culture medium influences the in vitro toxicity of silica nanoparticles to HepG2 cells.

PLoS One. 2017-8-10

[2]
Role of Physicochemical Properties in Nanoparticle Toxicity.

Nanomaterials (Basel). 2015-8-19

[3]
Cytotoxicity study of Piper nigrum seed mediated synthesized SnO nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines.

J Photochem Photobiol B. 2017-1

[4]
Size effect of SnO nanoparticles on bacteria toxicity and their membrane damage.

Chemosphere. 2016-12

[5]
A comparative study on the in vitro cytotoxic responses of two mammalian cell types to fullerenes, carbon nanotubes and iron oxide nanoparticles.

Drug Chem Toxicol. 2017-4

[6]
Real-time monitoring of mesenchymal stem cell responses to biomaterial surfaces and to a model drug by using quartz crystal microbalance.

Artif Cells Nanomed Biotechnol. 2015-10-8

[7]
Characterization, Quantification, and Determination of the Toxicity of Iron Oxide Nanoparticles to the Bone Marrow Cells.

Int J Mol Sci. 2015-9-14

[8]
High-throughput, quantitative assessment of the effects of low-dose silica nanoparticles on lung cells: grasping complex toxicity with a great depth of field.

BMC Genomics. 2015-4-18

[9]
Is the toxic potential of nanosilver dependent on its size?

Part Fibre Toxicol. 2014-12-3

[10]
Biogenic-production of SnO2 nanoparticles and its cytotoxic effect against hepatocellular carcinoma cell line (HepG2).

Appl Biochem Biotechnol. 2015-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索