Department of Chemistry, Korea University, Sejong 30019, Korea.
Nanotechnology. 2016 Oct 21;27(42):425711. doi: 10.1088/0957-4484/27/42/425711. Epub 2016 Sep 19.
To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes.
为了开发先进的电子设备,必须仔细考虑每个组件的表面/界面。在这里,我们使用导电原子力显微镜(C-AFM)研究了金属-半导体纳米级结的电特性。通过化学气相输运合成了单晶 CdS、CdSe 和 ZnO 一维纳米结构,并将单个纳米带(或纳米线)用于制造纳米结电极。通过将 C-AFM 金属(PtIr)尖端作为可移动触点放置在纳米带(或纳米线)上,获得电流-电压(I-V)曲线,并且通常表现出电阻开关行为,这可以通过金属和半导体之间的肖特基(高阻态)和欧姆(低阻态)接触来合理化。我们通过对 I-V 曲线进行拟合分析来获得肖特基势垒高度和理想因子。与体材料相比,本纳米结器件表现出更低的肖特基势垒高度和更高的理想因子,这与先前关于纳米结构的研究结果一致。结果表明,C-AFM 是表征半导体纳米结构和金属电极之间导电通道肖特基接触的有力工具。