National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China.
Institute of Complex Systems (ICS-4, Cellular Biophysics), Forschungszentrum Jülich, Jülich 52428, Germany.
Sci Rep. 2016 Sep 19;6:33521. doi: 10.1038/srep33521.
Single molecule localization microscopy (SMLM) is on its way to become a mainstream imaging technique in the life sciences. However, analysis of SMLM data is biased by user provided subjective parameters required by the analysis software. To remove this human bias we introduce here the Auto-Bayes method that executes the analysis of SMLM data automatically. We demonstrate the success of the method using the photoelectron count of an emitter as selection characteristic. Moreover, the principle can be used for any characteristic that is bimodally distributed with respect to false and true emitters. The method also allows generation of an emitter reliability map for estimating quality of SMLM-based structures. The potential of the Auto-Bayes method is shown by the fact that our first basic implementation was able to outperform all software packages that were compared in the ISBI online challenge in 2015, with respect to molecule detection (Jaccard index).
单分子定位显微镜(SMLM)正逐渐成为生命科学领域的主流成像技术。然而,SMLM 数据分析受到分析软件所需的用户提供的主观参数的影响。为了消除这种人为偏差,我们在这里引入了 Auto-Bayes 方法,该方法可以自动执行 SMLM 数据分析。我们使用发射器的光电子计数作为选择特征来证明该方法的成功。此外,该原理可用于任何相对于假和真发射器呈双峰分布的特征。该方法还可以生成发射器可靠性图,用于估计基于 SMLM 的结构的质量。Auto-Bayes 方法的潜力在于,我们的第一个基本实现能够在 2015 年的 ISBI 在线挑战中优于所有被比较的软件包,在分子检测(Jaccard 指数)方面表现出色。