1] Section of Molecular Cytology and Van Leeuwenhoek Centre of Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam Science Park 904, NL-1098 XH Amsterdam The Netherlands [2].
1] Section of Molecular Cytology and Van Leeuwenhoek Centre of Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam Science Park 904, NL-1098 XH Amsterdam The Netherlands [2] [3].
Sci Rep. 2014 Jan 24;4:3854. doi: 10.1038/srep03854.
The quality of super resolution images obtained by stochastic single-molecule microscopy critically depends on image analysis algorithms. We find that the choice of background estimator is often the most important determinant of reconstruction quality. A variety of techniques have found use, but many have a very narrow range of applicability depending upon the characteristics of the raw data. Importantly, we observe that when using otherwise accurate algorithms, unaccounted background components can give rise to biases on scales defeating the purpose of super-resolution microscopy. We find that a temporal median filter in particular provides a simple yet effective solution to the problem of background estimation, which we demonstrate over a range of imaging modalities and different reconstruction methods.
通过随机单分子显微镜获得的超分辨率图像的质量在很大程度上取决于图像分析算法。我们发现,背景估计器的选择通常是重建质量的最重要决定因素。已经发现了多种技术,但许多技术的适用范围非常狭窄,这取决于原始数据的特征。重要的是,我们观察到,当使用其他准确的算法时,未被考虑的背景成分可能会在尺度上产生偏差,从而使超分辨率显微镜的目的失效。我们发现,时间中位数滤波器特别为背景估计问题提供了一个简单而有效的解决方案,我们在一系列成像模式和不同的重建方法中证明了这一点。