Simon Chane Camille, Ieng Sio-Hoi, Posch Christoph, Benosman Ryad B
Pixium Vision Paris, France.
Institut National de la Santé et de la Recherche Médicale UMRI S 968, Sorbonne Universités, UPMC Univ Paris 06, UMR S 968, Centre National de la Recherche Scientifique, UMR 7210, Institut de la Vision Paris, France.
Front Neurosci. 2016 Aug 31;10:391. doi: 10.3389/fnins.2016.00391. eCollection 2016.
The asynchronous time-based neuromorphic image sensor ATIS is an array of autonomously operating pixels able to encode luminance information with an exceptionally high dynamic range (>143 dB). This paper introduces an event-based methodology to display data from this type of event-based imagers, taking into account the large dynamic range and high temporal accuracy that go beyond available mainstream display technologies. We introduce an event-based tone mapping methodology for asynchronously acquired time encoded gray-level data. A global and a local tone mapping operator are proposed. Both are designed to operate on a stream of incoming events rather than on time frame windows. Experimental results on real outdoor scenes are presented to evaluate the performance of the tone mapping operators in terms of quality, temporal stability, adaptation capability, and computational time.
异步基于时间的神经形态图像传感器ATIS是一个能够以极高动态范围(>143 dB)对亮度信息进行编码的自主运行像素阵列。本文介绍了一种基于事件的方法来显示来自此类基于事件的成像器的数据,同时考虑到超出现有主流显示技术的大动态范围和高时间精度。我们针对异步获取的时间编码灰度数据引入了一种基于事件的色调映射方法。提出了一个全局和一个局部色调映射算子。两者都设计为对传入事件流而不是时间帧窗口进行操作。给出了在真实户外场景下的实验结果,以评估色调映射算子在质量、时间稳定性、适应能力和计算时间方面的性能。