Suppr超能文献

通过低速率率编码和符合处理从基于帧的到无帧的事件驱动视觉系统的映射 - 应用于前馈 ConvNets。

Mapping from frame-driven to frame-free event-driven vision systems by low-rate rate coding and coincidence processing--application to feedforward ConvNets.

机构信息

University of Sevilla, Spain.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2013 Nov;35(11):2706-19. doi: 10.1109/TPAMI.2013.71.

Abstract

Event-driven visual sensors have attracted interest from a number of different research communities. They provide visual information in quite a different way from conventional video systems consisting of sequences of still images rendered at a given "frame rate." Event-driven vision sensors take inspiration from biology. Each pixel sends out an event (spike) when it senses something meaningful is happening, without any notion of a frame. A special type of event-driven sensor is the so-called dynamic vision sensor (DVS) where each pixel computes relative changes of light or "temporal contrast." The sensor output consists of a continuous flow of pixel events that represent the moving objects in the scene. Pixel events become available with microsecond delays with respect to "reality." These events can be processed "as they flow" by a cascade of event (convolution) processors. As a result, input and output event flows are practically coincident in time, and objects can be recognized as soon as the sensor provides enough meaningful events. In this paper, we present a methodology for mapping from a properly trained neural network in a conventional frame-driven representation to an event-driven representation. The method is illustrated by studying event-driven convolutional neural networks (ConvNet) trained to recognize rotating human silhouettes or high speed poker card symbols. The event-driven ConvNet is fed with recordings obtained from a real DVS camera. The event-driven ConvNet is simulated with a dedicated event-driven simulator and consists of a number of event-driven processing modules, the characteristics of which are obtained from individually manufactured hardware modules.

摘要

事件驱动型视觉传感器吸引了许多不同研究领域的关注。它们以与传统视频系统完全不同的方式提供视觉信息,传统视频系统由以给定“帧率”呈现的静态图像序列组成。事件驱动型视觉传感器从生物学中汲取灵感。每个像素在感知到有意义的事情发生时都会发出一个事件(尖峰),而无需任何帧的概念。一种特殊类型的事件驱动型传感器是所谓的动态视觉传感器(DVS),其中每个像素计算光的相对变化或“时间对比度”。传感器输出由表示场景中移动对象的连续像素事件流组成。像素事件相对于“现实”延迟微秒可用。这些事件可以通过事件(卷积)处理器级联“实时”处理。结果,输入和输出事件流在时间上几乎是一致的,并且一旦传感器提供了足够多的有意义事件,就可以识别对象。在本文中,我们提出了一种从传统帧驱动表示中经过适当训练的神经网络到事件驱动表示的映射方法。该方法通过研究用于识别旋转人体轮廓或高速扑克卡符号的事件驱动卷积神经网络(ConvNet)进行说明。事件驱动 ConvNet 由来自真实 DVS 相机的记录馈送。事件驱动 ConvNet 用专用的事件驱动模拟器进行模拟,由许多事件驱动处理模块组成,其特征是从单独制造的硬件模块中获得的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验