Suppr超能文献

基于异步事件的角点检测和匹配。

Asynchronous event-based corner detection and matching.

机构信息

Vision Institute, Pierre and Marie Curie University, Paris, France.

Vision Institute, Pierre and Marie Curie University, Paris, France.

出版信息

Neural Netw. 2015 Jun;66:91-106. doi: 10.1016/j.neunet.2015.02.013. Epub 2015 Mar 11.

Abstract

This paper introduces an event-based luminance-free method to detect and match corner events from the output of asynchronous event-based neuromorphic retinas. The method relies on the use of space-time properties of moving edges. Asynchronous event-based neuromorphic retinas are composed of autonomous pixels, each of them asynchronously generating "spiking" events that encode relative changes in pixels' illumination at high temporal resolutions. Corner events are defined as the spatiotemporal locations where the aperture problem can be solved using the intersection of several geometric constraints in events' spatiotemporal spaces. A regularization process provides the required constraints, i.e. the motion attributes of the edges with respect to their spatiotemporal locations using local geometric properties of visual events. Experimental results are presented on several real scenes showing the stability and robustness of the detection and matching.

摘要

本文提出了一种基于事件的无亮度方法,用于从异步事件型神经形态视网膜的输出中检测和匹配角点事件。该方法依赖于移动边缘的时空特性。异步事件型神经形态视网膜由自主像素组成,每个像素都以异步方式产生“尖峰”事件,以高时间分辨率编码像素照明的相对变化。角点事件被定义为可以使用事件时空空间中的几个几何约束的交点来解决孔径问题的时空位置。正则化过程提供了所需的约束,即使用视觉事件的局部几何特性来表示边缘相对于其时空位置的运动属性。实验结果表明,该方法在多个真实场景中具有稳定性和鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验