Suppr超能文献

足跟脂肪垫在不同应变率下的材料特性。

Material properties of the heel fat pad across strain rates.

作者信息

Grigoriadis Grigoris, Newell Nicolas, Carpanen Diagarajen, Christou Alexandros, Bull Anthony M J, Masouros Spyros D

机构信息

Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.

Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.

出版信息

J Mech Behav Biomed Mater. 2017 Jan;65:398-407. doi: 10.1016/j.jmbbm.2016.09.003. Epub 2016 Sep 8.

Abstract

The complex structural and material behaviour of the human heel fat pad determines the transmission of plantar loading to the lower limb across a wide range of loading scenarios; from locomotion to injurious incidents. The aim of this study was to quantify the hyper-viscoelastic material properties of the human heel fat pad across strains and strain rates. An inverse finite element (FE) optimisation algorithm was developed and used, in conjunction with quasi-static and dynamic tests performed to five cadaveric heel specimens, to derive specimen-specific and mean hyper-viscoelastic material models able to predict accurately the response of the tissue at compressive loading of strain rates up to 150s. The mean behaviour was expressed by the quasi-linear viscoelastic (QLV) material formulation, combining the Yeoh material model (C=0.1MPa, C=7MPa, K=2GPa) and Prony׳s terms (A=0.06, A=0.77, A=0.02 for τ=1ms, τ=10ms, τ=10s). These new data help to understand better the functional anatomy and pathophysiology of the foot and ankle, develop biomimetic materials for tissue reconstruction, design of shoe, insole, and foot and ankle orthoses, and improve the predictive ability of computational models of the foot and ankle used to simulate daily activities or predict injuries at high rate injurious incidents such as road traffic accidents and underbody blast.

摘要

人类足跟脂肪垫复杂的结构和材料特性决定了在从运动到受伤事件等广泛的负荷情况下,足底负荷向下肢的传递。本研究的目的是量化人类足跟脂肪垫在不同应变和应变率下的超粘弹性材料特性。开发并使用了一种逆有限元(FE)优化算法,结合对五个尸体足跟标本进行的准静态和动态测试,以推导能够准确预测组织在高达150s应变率的压缩负荷下响应的特定标本和平均超粘弹性材料模型。平均行为由准线性粘弹性(QLV)材料公式表示,结合了Yeoh材料模型(C = 0.1MPa,C = 7MPa,K = 2GPa)和Prony项(对于τ = 1ms、τ = 10ms、τ = 10s,A = 0.06、A = 0.77、A = 0.02)。这些新数据有助于更好地理解足踝的功能解剖学和病理生理学,开发用于组织重建的仿生材料,设计鞋子、鞋垫以及足踝矫形器,并提高用于模拟日常活动或预测道路交通事故和车底爆炸等高率伤害事件中损伤的足踝计算模型的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4caf/5161234/e3bfb1fba385/gr1.jpg

相似文献

1
Material properties of the heel fat pad across strain rates.
J Mech Behav Biomed Mater. 2017 Jan;65:398-407. doi: 10.1016/j.jmbbm.2016.09.003. Epub 2016 Sep 8.
3
Material properties of the human calcaneal fat pad in compression: experiment and theory.
J Biomech. 2002 Dec;35(12):1523-31. doi: 10.1016/s0021-9290(02)00090-8.
4
Estimating the material properties of heel pad sub-layers using inverse Finite Element Analysis.
Med Eng Phys. 2017 Feb;40:11-19. doi: 10.1016/j.medengphy.2016.11.003. Epub 2016 Nov 29.
5
Heel skin stiffness effect on the hind foot biomechanics during heel strike.
Skin Res Technol. 2010 Aug;16(3):291-6. doi: 10.1111/j.1600-0846.2010.00425.x.
6
A method for subject-specific modelling and optimisation of the cushioning properties of insole materials used in diabetic footwear.
Med Eng Phys. 2015 Jun;37(6):531-8. doi: 10.1016/j.medengphy.2015.03.009. Epub 2015 Apr 27.
9
The effect of heel-pad thickness and loading protocol on measured heel-pad stiffness and a standardized protocol for inter-subject comparability.
Clin Biomech (Bristol). 2006 Feb;21(2):204-12. doi: 10.1016/j.clinbiomech.2005.09.017. Epub 2005 Nov 11.
10
Subject-specific material properties of the heel pad: An inverse finite element analysis.
J Biomech. 2024 Mar;165:112016. doi: 10.1016/j.jbiomech.2024.112016. Epub 2024 Feb 22.

引用本文的文献

1
Materials and Structures Inspired by Human Heel Pads for Advanced Biomechanical Function.
Biomimetics (Basel). 2025 Apr 27;10(5):267. doi: 10.3390/biomimetics10050267.
4
Effects of extreme cyclic loading on the cushioning performance of human heel pads under engineering test condition.
Front Bioeng Biotechnol. 2023 Oct 20;11:1229976. doi: 10.3389/fbioe.2023.1229976. eCollection 2023.
5
Comparison of material properties of heel pad between adults with and without type 2 diabetes history: An investigation during gait.
Front Endocrinol (Lausanne). 2022 Aug 17;13:894383. doi: 10.3389/fendo.2022.894383. eCollection 2022.
6
Effect of loading history on material properties of human heel pad: an in-vivo pilot investigation during gait.
BMC Musculoskelet Disord. 2022 Mar 15;23(1):254. doi: 10.1186/s12891-022-05197-w.
7
Experimental characterisation of porcine subcutaneous adipose tissue under blunt impact up to irreversible deformation.
Int J Legal Med. 2022 May;136(3):897-910. doi: 10.1007/s00414-021-02755-0. Epub 2021 Dec 4.
9
Biomechanical insights into the role of foot pads during locomotion in camelid species.
Sci Rep. 2020 Mar 2;10(1):3856. doi: 10.1038/s41598-020-60795-9.
10
Mechanical Modeling of Healthy and Diseased Calcaneal Fat Pad Surrogates.
Biomimetics (Basel). 2019 Jan 3;4(1):1. doi: 10.3390/biomimetics4010001.

本文引用的文献

2
Blast effect on the lower extremities and its mitigation: a computational study.
J Mech Behav Biomed Mater. 2013 Dec;28:111-24. doi: 10.1016/j.jmbbm.2013.07.010. Epub 2013 Jul 19.
3
Analysis of heel pad tissues mechanics at the heel strike in bare and shod conditions.
Med Eng Phys. 2013 Apr;35(4):441-7. doi: 10.1016/j.medengphy.2012.06.008. Epub 2012 Jul 11.
4
A finite element model of the foot and ankle for automotive impact applications.
Ann Biomed Eng. 2012 Dec;40(12):2519-31. doi: 10.1007/s10439-012-0607-3. Epub 2012 Jun 14.
5
A numerical model for investigating the mechanics of calcaneal fat pad region.
J Mech Behav Biomed Mater. 2012 Jan;5(1):216-23. doi: 10.1016/j.jmbbm.2011.08.025. Epub 2011 Sep 13.
7
An elaborate data set characterizing the mechanical response of the foot.
J Biomech Eng. 2009 Sep;131(9):094502. doi: 10.1115/1.3148474.
9
The compressive material properties of the plantar soft tissue.
J Biomech. 2007;40(13):2975-81. doi: 10.1016/j.jbiomech.2007.02.009. Epub 2007 Apr 12.
10
Microchambers and macrochambers in heel pads: are they functionally different?
J Appl Physiol (1985). 2007 Jun;102(6):2227-31. doi: 10.1152/japplphysiol.01137.2006. Epub 2007 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验