Suppr超能文献

酸度和有机物促进干燥土壤中氮氧化物的非生物生成。

Acidity and organic matter promote abiotic nitric oxide production in drying soils.

机构信息

Department of Ecology, Evolution and Marine Biology, Earth Research Institute, University of California, Santa Barbara, CA, 93106, USA.

Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA.

出版信息

Glob Chang Biol. 2017 Apr;23(4):1735-1747. doi: 10.1111/gcb.13507. Epub 2016 Oct 26.

Abstract

Soils are an important source of NO, particularly in dry lands because of trade-offs that develop between biotic and abiotic NO-producing processes when soils dry out. Understanding how drier climates may offset the balance of these trade-offs as soils transition toward more arid states is, therefore, critical to estimating global NO budgets, especially because drylands are expected to increase in size. We measured NO emission pulses after wetting soils from similar lithologies along an altitudinal gradient in the Sierra Nevada, CA, where mean annual precipitation varied from 670 to 1500 mm. Along the gradient, we measured field NO emissions, and used chloroform in the laboratory to reduce microbial activity and partition between biotic and abiotic NO-producing processes (i.e., chemodenitrification). Field NO emission pulses were lowest in the acidic and SOM-rich soils (4-72 ng NO-N m s ), but were highest in the high-elevation barren site (~560 ng NO-N m s ). In the laboratory, NO emission pulses were up to 19× greater in chloroform-treated soils than in the controls, and these abiotic pulses increased with elevation as pH decreased (6.2-4.4) and soil organic matter (SOM) increased (18-157 mg C g ). Drought can shift the balance between the biotic and abiotic processes that produce NO, favoring chemodenitrification during periods when biological processes become stressed. Acidic and SOM-rich soils, which typically develop under mesic conditions, are most vulnerable to N loss via NO as interactions between pH, SOM, and drought stimulate chemodenitrification.

摘要

土壤是氮氧化物(NO)的一个重要来源,特别是在干旱地区,因为当土壤变干时,生物和非生物产生 NO 的过程之间会出现权衡。因此,了解干燥气候如何在土壤向更干旱状态转变时抵消这些权衡的平衡,对于估算全球 NO 预算至关重要,特别是因为预计干旱地区的面积将会增加。我们沿着加利福尼亚州内华达山脉的海拔梯度,从类似岩性的土壤中测量了湿化后土壤的 NO 排放脉冲,这里的年平均降水量从 670 毫米到 1500 毫米不等。在梯度上,我们测量了野外 NO 排放,并在实验室中使用三氯甲烷来减少微生物活性,并划分生物和非生物产生 NO 的过程之间的比例(即化学反硝化)。在酸性和富含有机质的土壤(4-72ngNO-Nms)中,野外 NO 排放脉冲最低,但在高海拔荒芜地区(~560ngNO-Nms)最高。在实验室中,三氯甲烷处理过的土壤中 NO 排放脉冲比对照土壤高 19 倍,这些非生物脉冲随着海拔的升高而增加,因为 pH 值降低(6.2-4.4)和土壤有机质(SOM)增加(18-157mgCg)。干旱会改变产生 NO 的生物和非生物过程之间的平衡,在生物过程受到压力时,有利于化学反硝化。通常在潮湿条件下形成的酸性和富含有机质的土壤,由于 pH 值、SOM 和干旱之间的相互作用刺激化学反硝化,因此最容易通过 NO 失去氮。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验