Departamento Genética Molecular y Microbiología, Pontificia Universidad Católica de Chilegrid.7870.8, Santiago, Chile.
Centre for Microbial Ecology and Genomics (CMEG), University of Pretoria, Pretoria, South Africa.
Microbiol Mol Biol Rev. 2022 Jun 15;86(2):e0010921. doi: 10.1128/mmbr.00109-21. Epub 2022 Apr 7.
Arid ecosystems cover ∼40% of the Earth's terrestrial surface and store a high proportion of the global nitrogen (N) pool. They are low-productivity, low-biomass, and polyextreme ecosystems, i.e., with (hyper)arid and (hyper)oligotrophic conditions and high surface UV irradiation and evapotranspiration. These polyextreme conditions severely limit the presence of macrofauna and -flora and, particularly, the growth and productivity of plant species. Therefore, it is generally recognized that much of the primary production (including N-input processes) and nutrient biogeochemical cycling (particularly N cycling) in these ecosystems are microbially mediated. Consequently, we present a comprehensive survey of the current state of knowledge of biotic and abiotic N-cycling processes of edaphic (i.e., open soil, biological soil crust, or plant-associated rhizosphere and rhizosheath) and hypo/endolithic refuge niches from drylands in general, including hot, cold, and polar desert ecosystems. We particularly focused on the microbially mediated biological nitrogen fixation, N mineralization, assimilatory and dissimilatory nitrate reduction, and nitrification N-input processes and the denitrification and anaerobic ammonium oxidation (anammox) N-loss processes. We note that the application of modern meta-omics and related methods has generated comprehensive data sets on the abundance, diversity, and ecology of the different N-cycling microbial guilds. However, it is worth mentioning that microbial N-cycling data from important deserts (e.g., Sahara) and quantitative rate data on N transformation processes from various desert niches are lacking or sparse. Filling this knowledge gap is particularly important, as climate change models often lack data on microbial activity and environmental microbial N-cycling communities can be key actors of climate change by producing or consuming nitrous oxide (NO), a potent greenhouse gas.
干旱生态系统覆盖了地球陆地表面的约 40%,并储存了全球氮 (N) 库的很大一部分。它们是低生产力、低生物量和多极端的生态系统,即具有(超)干旱和(超)贫营养条件以及高表面紫外线辐射和蒸散。这些多极端条件严重限制了大型动植物的存在,特别是植物物种的生长和生产力。因此,人们普遍认为,这些生态系统中的大部分初级生产力(包括 N 输入过程)和养分生物地球化学循环(特别是 N 循环)都是由微生物介导的。因此,我们全面调查了干旱地区土壤(即开放土壤、生物土壤结皮或与植物相关的根际和根鞘)和隐/内生避难所中生物和非生物 N 循环过程的当前知识状况,包括热、冷和极地荒漠生态系统。我们特别关注微生物介导的生物固氮、N 矿化、同化和异化硝酸盐还原以及硝化 N 输入过程以及反硝化和厌氧氨氧化(anammox)N 损失过程。我们注意到,现代元组学和相关方法的应用已经生成了关于不同 N 循环微生物类群的丰度、多样性和生态学的综合数据集。然而,值得一提的是,重要沙漠(例如撒哈拉沙漠)的微生物 N 循环数据以及来自各种沙漠生境的 N 转化过程的定量速率数据缺乏或稀疏。填补这一知识空白尤为重要,因为气候变化模型通常缺乏微生物活性数据,而环境微生物 N 循环群落可以通过产生或消耗一氧化二氮(NO)成为气候变化的关键因素,NO 是一种强效温室气体。