Suppr超能文献

通过经过验证的开源工具提高基于核磁共振的代谢组学的严谨性。

Increasing rigor in NMR-based metabolomics through validated and open source tools.

作者信息

Eghbalnia Hamid R, Romero Pedro R, Westler William M, Baskaran Kumaran, Ulrich Eldon L, Markley John L

机构信息

Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA.

Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA.

出版信息

Curr Opin Biotechnol. 2017 Feb;43:56-61. doi: 10.1016/j.copbio.2016.08.005. Epub 2016 Sep 16.

Abstract

The metabolome, the collection of small molecules associated with an organism, is a growing subject of inquiry, with the data utilized for data-intensive systems biology, disease diagnostics, biomarker discovery, and the broader characterization of small molecules in mixtures. Owing to their close proximity to the functional endpoints that govern an organism's phenotype, metabolites are highly informative about functional states. The field of metabolomics identifies and quantifies endogenous and exogenous metabolites in biological samples. Information acquired from nuclear magnetic spectroscopy (NMR), mass spectrometry (MS), and the published literature, as processed by statistical approaches, are driving increasingly wider applications of metabolomics. This review focuses on the role of databases and software tools in advancing the rigor, robustness, reproducibility, and validation of metabolomics studies.

摘要

代谢组是与生物体相关的小分子集合,是一个不断发展的研究领域,其数据被用于数据密集型系统生物学、疾病诊断、生物标志物发现以及混合物中小分子的更广泛表征。由于代谢物与决定生物体表型的功能终点密切相关,它们能提供关于功能状态的丰富信息。代谢组学领域负责识别和量化生物样品中的内源性和外源性代谢物。通过统计方法处理从核磁共振光谱(NMR)、质谱(MS)以及已发表文献中获取的信息,正推动着代谢组学越来越广泛的应用。本综述重点关注数据库和软件工具在提高代谢组学研究的严谨性、稳健性、可重复性和验证方面的作用。

相似文献

1
Increasing rigor in NMR-based metabolomics through validated and open source tools.
Curr Opin Biotechnol. 2017 Feb;43:56-61. doi: 10.1016/j.copbio.2016.08.005. Epub 2016 Sep 16.
2
Tools for Enhanced NMR-Based Metabolomics Analysis.
Methods Mol Biol. 2019;2037:413-427. doi: 10.1007/978-1-4939-9690-2_23.
4
NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review.
Anal Chim Acta. 2012 Oct 31;750:82-97. doi: 10.1016/j.aca.2012.05.049. Epub 2012 Jun 9.
5
Knowns and unknowns in metabolomics identified by multidimensional NMR and hybrid MS/NMR methods.
Curr Opin Biotechnol. 2017 Feb;43:17-24. doi: 10.1016/j.copbio.2016.07.006. Epub 2016 Aug 20.
6
Time is ripe: maturation of metabolomics in chronobiology.
Curr Opin Biotechnol. 2017 Feb;43:70-76. doi: 10.1016/j.copbio.2016.09.007. Epub 2016 Oct 1.
7
Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology.
Int J Mol Sci. 2016 Apr 27;17(5):632. doi: 10.3390/ijms17050632.
8
Metabolomics: Challenges and Opportunities in Systems Biology Studies.
Methods Mol Biol. 2018;1702:327-336. doi: 10.1007/978-1-4939-7456-6_16.
9
Metabolomics and dereplication strategies in natural products.
Methods Mol Biol. 2013;1055:227-44. doi: 10.1007/978-1-62703-577-4_17.
10
Two elephants in the room: new hybrid nuclear magnetic resonance and mass spectrometry approaches for metabolomics.
Curr Opin Clin Nutr Metab Care. 2015 Sep;18(5):471-7. doi: 10.1097/MCO.0000000000000206.

引用本文的文献

1
Best Practices in NMR Metabolomics: Current State.
Trends Analyt Chem. 2024 Feb;171. doi: 10.1016/j.trac.2023.117478. Epub 2023 Dec 12.
2
Metabolomic changes in children with autism.
World J Clin Pediatr. 2024 Jun 9;13(2):92737. doi: 10.5409/wjcp.v13.i2.92737.
4
Problems, principles and progress in computational annotation of NMR metabolomics data.
Metabolomics. 2022 Dec 5;18(12):102. doi: 10.1007/s11306-022-01962-z.
5
Metabolomics and NMR.
Handb Exp Pharmacol. 2023;277:73-116. doi: 10.1007/164_2022_616.
6
Studying Metabolism by NMR-Based Metabolomics.
Front Mol Biosci. 2022 Apr 27;9:882487. doi: 10.3389/fmolb.2022.882487. eCollection 2022.
8
Quantitative NMR-Based Biomedical Metabolomics: Current Status and Applications.
Molecules. 2020 Nov 4;25(21):5128. doi: 10.3390/molecules25215128.
9
Metabolomics: An emerging potential approach to decipher critical illnesses.
Biophys Chem. 2020 Dec;267:106462. doi: 10.1016/j.bpc.2020.106462. Epub 2020 Aug 31.

本文引用的文献

1
NMRPro: an integrated web component for interactive processing and visualization of NMR spectra.
Bioinformatics. 2016 Jul 1;32(13):2067-8. doi: 10.1093/bioinformatics/btw102. Epub 2016 Feb 26.
2
Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology.
Int J Mol Sci. 2016 Apr 27;17(5):632. doi: 10.3390/ijms17050632.
3
MetaboLights: An Open-Access Database Repository for Metabolomics Data.
Curr Protoc Bioinformatics. 2016 Mar 24;53:14.13.1-14.13.18. doi: 10.1002/0471250953.bi1413s53.
4
NMRmix: A Tool for the Optimization of Compound Mixtures in 1D (1)H NMR Ligand Affinity Screens.
J Proteome Res. 2016 Apr 1;15(4):1360-8. doi: 10.1021/acs.jproteome.6b00121. Epub 2016 Mar 23.
5
Applications of NMR spectroscopy to systems biochemistry.
Prog Nucl Magn Reson Spectrosc. 2016 Feb;92-93:18-53. doi: 10.1016/j.pnmrs.2016.01.005. Epub 2016 Feb 6.
6
Emerging new strategies for successful metabolite identification in metabolomics.
Bioanalysis. 2016 Mar;8(6):557-73. doi: 10.4155/bio-2015-0004. Epub 2016 Feb 26.
7
Recommendations and Standardization of Biomarker Quantification Using NMR-Based Metabolomics with Particular Focus on Urinary Analysis.
J Proteome Res. 2016 Feb 5;15(2):360-73. doi: 10.1021/acs.jproteome.5b00885. Epub 2016 Jan 20.
8
The Reactome pathway Knowledgebase.
Nucleic Acids Res. 2016 Jan 4;44(D1):D481-7. doi: 10.1093/nar/gkv1351. Epub 2015 Dec 9.
9
Data standards can boost metabolomics research, and if there is a will, there is a way.
Metabolomics. 2016;12:14. doi: 10.1007/s11306-015-0879-3. Epub 2015 Nov 17.
10
Protein acetylation in metabolism - metabolites and cofactors.
Nat Rev Endocrinol. 2016 Jan;12(1):43-60. doi: 10.1038/nrendo.2015.181. Epub 2015 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验