Eghbalnia Hamid R, Romero Pedro R, Westler William M, Baskaran Kumaran, Ulrich Eldon L, Markley John L
Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA.
Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA.
Curr Opin Biotechnol. 2017 Feb;43:56-61. doi: 10.1016/j.copbio.2016.08.005. Epub 2016 Sep 16.
The metabolome, the collection of small molecules associated with an organism, is a growing subject of inquiry, with the data utilized for data-intensive systems biology, disease diagnostics, biomarker discovery, and the broader characterization of small molecules in mixtures. Owing to their close proximity to the functional endpoints that govern an organism's phenotype, metabolites are highly informative about functional states. The field of metabolomics identifies and quantifies endogenous and exogenous metabolites in biological samples. Information acquired from nuclear magnetic spectroscopy (NMR), mass spectrometry (MS), and the published literature, as processed by statistical approaches, are driving increasingly wider applications of metabolomics. This review focuses on the role of databases and software tools in advancing the rigor, robustness, reproducibility, and validation of metabolomics studies.
代谢组是与生物体相关的小分子集合,是一个不断发展的研究领域,其数据被用于数据密集型系统生物学、疾病诊断、生物标志物发现以及混合物中小分子的更广泛表征。由于代谢物与决定生物体表型的功能终点密切相关,它们能提供关于功能状态的丰富信息。代谢组学领域负责识别和量化生物样品中的内源性和外源性代谢物。通过统计方法处理从核磁共振光谱(NMR)、质谱(MS)以及已发表文献中获取的信息,正推动着代谢组学越来越广泛的应用。本综述重点关注数据库和软件工具在提高代谢组学研究的严谨性、稳健性、可重复性和验证方面的作用。