Suppr超能文献

情绪状态识别,实现低计算复杂度策略。

Emotional states recognition, implementing a low computational complexity strategy.

机构信息

Instituto Tecnológico de Tijuana, Mexico.

出版信息

Health Informatics J. 2018 Jun;24(2):146-170. doi: 10.1177/1460458216661862. Epub 2016 Sep 18.

Abstract

This article describes a methodology to recognize emotional states through an electroencephalography signals analysis, developed with the premise of reducing the computational burden that is associated with it, implementing a strategy that reduces the amount of data that must be processed by establishing a relationship between electrodes and Brodmann regions, so as to discard electrodes that do not provide relevant information to the identification process. Also some design suggestions to carry out a pattern recognition process by low computational complexity neural networks and support vector machines are presented, which obtain up to a 90.2% mean recognition rate.

摘要

本文描述了一种通过脑电图信号分析来识别情绪状态的方法,该方法的前提是降低与之相关的计算负担,通过建立电极和布罗德曼区域之间的关系来实现一种减少必须处理的数据量的策略,从而丢弃对识别过程没有提供相关信息的电极。此外,还提出了一些设计建议,以便通过低计算复杂度神经网络和支持向量机进行模式识别过程,从而获得高达 90.2%的平均识别率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验