Suppr超能文献

基于不完整数据的分层线性模型的贝叶斯估计:聚类水平交互效应与小样本量

Bayesian Estimation of Hierarchical Linear Models From Incomplete Data: Cluster-Level Interaction Effects and Small Sample Sizes.

作者信息

Shin Dongho, Shin Yongyun, Hagiwara Nao

机构信息

Department of Biostatistics, Virginia Commonwealth University, Virginia, USA.

Tempus AI, Inc., Chicago, Illinois, USA.

出版信息

Stat Med. 2025 May;44(10-12):e70051. doi: 10.1002/sim.70051.

Abstract

We consider Bayesian estimation of a hierarchical linear model (HLM) from partially observed data, assumed to be missing at random, and small sample sizes. A vector of continuous covariates includes cluster-level partially observed covariates with interaction effects. Due to small sample sizes from 37 patient-physician encounters repeatedly measured at four time points, maximum-likelihood estimation is suboptimal. Existing Gibbs samplers impute missing values of by a Metropolis algorithm using proposal densities that have constant variances while the target posterior distributions have nonconstant variances. Therefore, these samplers may not ensure compatibility with the HLM and, as a result, may not guarantee unbiased estimation of the HLM. We introduce a compatible Gibbs sampler that imputes parameters and missing values directly from the exact posterior distributions. We apply our Gibbs sampler to the longitudinal patient-physician encounter data and compare our estimators with those from existing methods by simulation.

摘要

我们考虑从部分观测数据(假定为随机缺失)和小样本量中对分层线性模型(HLM)进行贝叶斯估计。连续协变量向量包括具有交互效应的聚类水平部分观测协变量。由于在四个时间点重复测量的37次医患接触的样本量较小,最大似然估计并非最优。现有的吉布斯采样器使用具有恒定方差的提议密度通过 metropolis 算法来插补缺失值,而目标后验分布具有非恒定方差。因此,这些采样器可能无法确保与HLM兼容,结果可能无法保证HLM的无偏估计。我们引入一种兼容的吉布斯采样器,它直接从精确的后验分布中插补参数和缺失值。我们将吉布斯采样器应用于纵向医患接触数据,并通过模拟将我们的估计器与现有方法的估计器进行比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cf3/12083211/d21ef9c916aa/SIM-44-0-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验