Shin Dongho, Shin Yongyun, Hagiwara Nao
Department of Biostatistics, Virginia Commonwealth University, Virginia, USA.
Tempus AI, Inc., Chicago, Illinois, USA.
Stat Med. 2025 May;44(10-12):e70051. doi: 10.1002/sim.70051.
We consider Bayesian estimation of a hierarchical linear model (HLM) from partially observed data, assumed to be missing at random, and small sample sizes. A vector of continuous covariates includes cluster-level partially observed covariates with interaction effects. Due to small sample sizes from 37 patient-physician encounters repeatedly measured at four time points, maximum-likelihood estimation is suboptimal. Existing Gibbs samplers impute missing values of by a Metropolis algorithm using proposal densities that have constant variances while the target posterior distributions have nonconstant variances. Therefore, these samplers may not ensure compatibility with the HLM and, as a result, may not guarantee unbiased estimation of the HLM. We introduce a compatible Gibbs sampler that imputes parameters and missing values directly from the exact posterior distributions. We apply our Gibbs sampler to the longitudinal patient-physician encounter data and compare our estimators with those from existing methods by simulation.
我们考虑从部分观测数据(假定为随机缺失)和小样本量中对分层线性模型(HLM)进行贝叶斯估计。连续协变量向量包括具有交互效应的聚类水平部分观测协变量。由于在四个时间点重复测量的37次医患接触的样本量较小,最大似然估计并非最优。现有的吉布斯采样器使用具有恒定方差的提议密度通过 metropolis 算法来插补缺失值,而目标后验分布具有非恒定方差。因此,这些采样器可能无法确保与HLM兼容,结果可能无法保证HLM的无偏估计。我们引入一种兼容的吉布斯采样器,它直接从精确的后验分布中插补参数和缺失值。我们将吉布斯采样器应用于纵向医患接触数据,并通过模拟将我们的估计器与现有方法的估计器进行比较。