Spórna-Kucab Aneta, Hołda Ewelina, Wybraniec Sławomir
Department of Analytical Chemistry, Institute C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, Cracow 31-155, Poland.
Department of Analytical Chemistry, Institute C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, Cracow 31-155, Poland.
J Chromatogr B Analyt Technol Biomed Life Sci. 2016 Oct 15;1033-1034:421-427. doi: 10.1016/j.jchromb.2016.09.005. Epub 2016 Sep 5.
Antioxidant and possible chemopreventive properties of betacyanins, natural plant pigments, contribute to a growing interest in their chemistry and separation. Mixtures of betacyanins from fresh red Gomphrena globosa L. cultivar flowers were separated in three highly polar solvent systems by high-speed counter-current chromatography (HSCCC) for a direct comparison of their separation effectiveness. Three samples of crude extract (600mg) were run on semi-preparative scale in solvent system (NH4)2SO4soln - EtOH (2.0:1.0, v/v) (system I) and the modified systems: EtOH - ACN - 1-PrOH - (NH4)2SO4satd.soln - H2O (0.5:0.5:0.5:1.2:1.0, v/v/v/v/v) (system II) and EtOH - ACN - (NH4)2SO4satd.soln - H2O (1.0:0.5:1.2:1.0, v/v/v/v) (system III). The systems were used in the head-to-tail (system I) or tail-to-head (systems II and III) mode. The flow rate of the mobile phase was 2.0ml/min and the column rotation speed was 860rpm. The retention of the stationary phase was 52.0% (system I), 80.2% (systems II) and 82.0% (system III). The betacyanins in the crude extract as well as HSCCC fractions were analyzed by LC-MS/MS. System I was applied for the first time in HSCCC for the separation of betacyanins and was quite effective in separation of amaranthine and 17-decarboxy-amaranthine (αI=1.19) and very effective for 17-decarboxy-amaranthine and betanin (αI=2.20). Modification of system I with acetonitrile (system III) as well as acetonitrile and propanol (system II) increased their separation effectiveness. Systems II-III enable complete separation of 17-decarboxy-amaranthine (KD(II)=2.94,KD(III)=2.42) and betanin (KD(II)=2.46,KD(III)=1.10) as well as betanin and gomphrenin I (KD(II)=1.62, KD(III)=0.74). In addition, separation of amaranthine and 17-decarboxy-amaranthine is the most effective in system II, therefore, this system proved to be the most suitable for the separation of all polar betacyanins.
甜菜色素是天然植物色素,具有抗氧化和潜在的化学预防特性,这使得人们对其化学性质和分离方法越来越感兴趣。通过高速逆流色谱法(HSCCC)在三种高极性溶剂体系中分离了新鲜红色千日红栽培种花中的甜菜色素混合物,以直接比较它们的分离效果。在溶剂体系(NH4)2SO4溶液 - 乙醇(2.0:1.0,v/v)(体系I)以及改性体系:乙醇 - 乙腈 - 正丙醇 - (NH4)2SO4饱和溶液 - 水(0.5:0.5:0.5:1.2:1.0,v/v/v/v/v)(体系II)和乙醇 - 乙腈 - (NH4)2SO4饱和溶液 - 水(1.0:0.5:1.2:1.0,v/v/v/v)(体系III)中,对三个粗提物样品(600mg)进行了半制备规模的实验。这些体系以头对尾(体系I)或尾对头(体系II和III)模式使用。流动相流速为2.0ml/min,柱转速为860rpm。固定相保留率分别为52.0%(体系I)、80.2%(体系II)和82.0%(体系III)。通过LC-MS/MS分析了粗提物以及HSCCC馏分中的甜菜色素。体系I首次应用于HSCCC分离甜菜色素,在分离苋菜红和17 - 脱羧苋菜红(αI = 1.19)方面相当有效,对17 - 脱羧苋菜红和甜菜红(αI = 2.20)的分离非常有效。用乙腈(体系III)以及乙腈和丙醇(体系II)对体系I进行改性提高了它们的分离效果。体系II - III能够完全分离17 - 脱羧苋菜红(KD(II)= 2.94,KD(III)= 2.42)和甜菜红(KD(II)= 2.46,KD(III)= 1.10)以及甜菜红和千日红素I(KD(II)= 1.62,KD(III)= 0.74)。此外,在体系II中苋菜红和17 - 脱羧苋菜红的分离最为有效,因此,该体系被证明最适合分离所有极性甜菜色素。