Suppr超能文献

基于树的模型进行叶形变异的基因-基因和基因-环境的定量遗传定位。

Quantitative gene-gene and gene-environment mapping for leaf shape variation using tree-based models.

机构信息

Department of Mathematics and Statistics, Utah State University, Logan, UT, 84321, USA.

Forage and Range Research Lab, USDA-ARS, Logan, UT, 84322, USA.

出版信息

New Phytol. 2017 Jan;213(1):455-469. doi: 10.1111/nph.14131. Epub 2016 Sep 21.

Abstract

Leaf shape traits have long been a focus of many disciplines, but the complex genetic and environmental interactive mechanisms regulating leaf shape variation have not yet been investigated in detail. The question of the respective roles of genes and environment and how they interact to modulate leaf shape is a thorny evolutionary problem, and sophisticated methodology is needed to address it. In this study, we investigated a framework-level approach that inputs shape image photographs and genetic and environmental data, and then outputs the relative importance ranks of all variables after integrating shape feature extraction, dimension reduction, and tree-based statistical models. The power of the proposed framework was confirmed by simulation and a Populus szechuanica var. tibetica data set. This new methodology resulted in the detection of novel shape characteristics, and also confirmed some previous findings. The quantitative modeling of a combination of polygenetic, plastic, epistatic, and gene-environment interactive effects, as investigated in this study, will improve the discernment of quantitative leaf shape characteristics, and the methods are ready to be applied to other leaf morphology data sets. Unlike the majority of approaches in the quantitative leaf shape literature, this framework-level approach is data-driven, without assuming any pre-known shape attributes, landmarks, or model structures.

摘要

叶片形状特征一直是许多学科的研究重点,但调节叶片形状变异的复杂遗传和环境相互作用机制尚未得到详细研究。基因和环境各自的作用以及它们如何相互作用来调节叶片形状的问题是一个棘手的进化问题,需要复杂的方法来解决。在这项研究中,我们研究了一种框架级方法,该方法输入形状图像照片以及遗传和环境数据,然后在整合形状特征提取、降维和基于树的统计模型后,输出所有变量的相对重要性等级。该方法的有效性通过模拟和一个川滇柳变种数据集得到了验证。这种新方法不仅检测到了新的形状特征,还证实了一些之前的发现。本研究中调查的多基因、可塑性、上位性和基因-环境相互作用的组合的定量建模,将提高对定量叶片形状特征的识别,并且这些方法已经准备好应用于其他叶片形态数据集。与定量叶片形状文献中的大多数方法不同,该框架级方法是数据驱动的,不假设任何预先已知的形状属性、地标或模型结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验