Suppr超能文献

Inversion of diffraction data for amorphous materials.

作者信息

Pandey Anup, Biswas Parthapratim, Drabold D A

机构信息

Department of Physics and Astronomy, Condensed Matter Surface Science Program, Ohio University, Athens OH 45701, USA.

Department of Physics and Astronomy, The University of Southern Mississippi, Hattiesburg MS 39406, USA.

出版信息

Sci Rep. 2016 Sep 22;6:33731. doi: 10.1038/srep33731.

Abstract

The general and practical inversion of diffraction data-producing a computer model correctly representing the material explored-is an important unsolved problem for disordered materials. Such modeling should proceed by using our full knowledge base, both from experiment and theory. In this paper, we describe a robust method to jointly exploit the power of ab initio atomistic simulation along with the information carried by diffraction data. The method is applied to two very different systems: amorphous silicon and two compositions of a solid electrolyte memory material silver-doped GeSe. The technique is easy to implement, is faster and yields results much improved over conventional simulation methods for the materials explored. By direct calculation, we show that the method works for both poor and excellent glass forming materials. It offers a means to add a priori information in first-principles modeling of materials, and represents a significant step toward the computational design of non-crystalline materials using accurate interatomic interactions and experimental information.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4323/5031976/405452c04246/srep33731-f1.jpg

相似文献

1
Inversion of diffraction data for amorphous materials.
Sci Rep. 2016 Sep 22;6:33731. doi: 10.1038/srep33731.
2
Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
J Phys Condens Matter. 2008 Feb 13;20(6):060301. doi: 10.1088/0953-8984/20/06/060301. Epub 2008 Jan 24.
3
Atomistic modeling of amorphous silicon carbide: an approximate first-principles study in constrained solution space.
J Phys Condens Matter. 2009 Jul 1;21(26):265801. doi: 10.1088/0953-8984/21/26/265801. Epub 2009 Jun 3.
4
Computational materials science aided design of glass ceramics and crystal properties (abstract only).
J Phys Condens Matter. 2008 Feb 13;20(6):064233. doi: 10.1088/0953-8984/20/6/064233. Epub 2008 Jan 24.
5
Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns.
Pharm Res. 2006 Oct;23(10):2333-49. doi: 10.1007/s11095-006-9086-2. Epub 2006 Sep 22.
6
Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
Astrobiology. 2022 Jun;22(S1):S112-S164. doi: 10.1089/AST.2021.0113. Epub 2022 May 19.
8
Modeling LiF and FLiBe Molten Salts with Robust Neural Network Interatomic Potential.
ACS Appl Mater Interfaces. 2021 Jun 2;13(21):24582-24592. doi: 10.1021/acsami.1c00604. Epub 2021 May 21.
9
Realistic Atomistic Structure of Amorphous Silicon from Machine-Learning-Driven Molecular Dynamics.
J Phys Chem Lett. 2018 Jun 7;9(11):2879-2885. doi: 10.1021/acs.jpclett.8b00902. Epub 2018 May 17.

引用本文的文献

1
Is the Future of Materials Amorphous? Challenges and Opportunities in Simulations of Amorphous Materials.
ACS Phys Chem Au. 2024 Dec 31;5(1):3-16. doi: 10.1021/acsphyschemau.4c00063. eCollection 2025 Jan 22.
3
Comprehensive characterization of the structure of Zr-based metallic glasses.
Sci Rep. 2024 Feb 28;14(1):4911. doi: 10.1038/s41598-024-53509-y.
4
Structure of semiconducting versus fast-ion conducting glasses in the Ag-Ge-Se system.
R Soc Open Sci. 2018 Jan 17;5(1):171401. doi: 10.1098/rsos.171401. eCollection 2018 Jan.

本文引用的文献

1
Sculpting the band gap: a computational approach.
Sci Rep. 2015 Oct 22;5:15522. doi: 10.1038/srep15522.
2
A study of hydrogen microstructure in amorphous silicon via inversion of nuclear magnetic resonance spectra.
J Phys Condens Matter. 2013 Apr 24;25(16):165801. doi: 10.1088/0953-8984/25/16/165801. Epub 2013 Apr 3.
3
A hybrid computational-experimental approach for automated crystal structure solution.
Nat Mater. 2013 Feb;12(2):123-7. doi: 10.1038/nmat3490. Epub 2012 Nov 25.
5
RMCProfile: reverse Monte Carlo for polycrystalline materials.
J Phys Condens Matter. 2007 Aug 22;19(33):335218. doi: 10.1088/0953-8984/19/33/335218. Epub 2007 Jul 4.
6
Ab initio random structure searching.
J Phys Condens Matter. 2011 Feb 9;23(5):053201. doi: 10.1088/0953-8984/23/5/053201. Epub 2011 Jan 5.
7
RMCSANS--modelling the inter-particle term of small angle scattering data via the reverse Monte Carlo method.
J Phys Condens Matter. 2010 Oct 13;22(40):404216. doi: 10.1088/0953-8984/22/40/404216. Epub 2010 Sep 22.
8
Structure determination of disordered materials from diffraction data.
Phys Rev Lett. 2010 Mar 26;104(12):125501. doi: 10.1103/PhysRevLett.104.125501. Epub 2010 Mar 22.
9
Challenges in modeling materials properties without experimental input.
Science. 2008 Aug 8;321(5890):800-3. doi: 10.1126/science.1158009.
10
Nanoionics-based resistive switching memories.
Nat Mater. 2007 Nov;6(11):833-40. doi: 10.1038/nmat2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验