Deringer Volker L, Bernstein Noam, Bartók Albert P, Cliffe Matthew J, Kerber Rachel N, Marbella Lauren E, Grey Clare P, Elliott Stephen R, Csányi Gábor
Department of Engineering , University of Cambridge , Cambridge CB2 1PZ , United Kingdom.
Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom.
J Phys Chem Lett. 2018 Jun 7;9(11):2879-2885. doi: 10.1021/acs.jpclett.8b00902. Epub 2018 May 17.
Amorphous silicon ( a-Si) is a widely studied noncrystalline material, and yet the subtle details of its atomistic structure are still unclear. Here, we show that accurate structural models of a-Si can be obtained using a machine-learning-based interatomic potential. Our best a-Si network is obtained by simulated cooling from the melt at a rate of 10 K/s (that is, on the 10 ns time scale), contains less than 2% defects, and agrees with experiments regarding excess energies, diffraction data, and Si NMR chemical shifts. We show that this level of quality is impossible to achieve with faster quench simulations. We then generate a 4096-atom system that correctly reproduces the magnitude of the first sharp diffraction peak (FSDP) in the structure factor, achieving the closest agreement with experiments to date. Our study demonstrates the broader impact of machine-learning potentials for elucidating structures and properties of technologically important amorphous materials.
非晶硅(a-Si)是一种被广泛研究的非晶态材料,但其原子结构的细微细节仍不清楚。在此,我们表明可以使用基于机器学习的原子间势获得精确的非晶硅结构模型。我们最好的非晶硅网络是通过以10 K/s的速率从熔体中模拟冷却得到的(即在10 ns时间尺度上),缺陷少于2%,并且在过剩能量、衍射数据和硅核磁共振化学位移方面与实验结果相符。我们表明,更快的淬火模拟无法达到这种质量水平。然后,我们生成了一个4096原子的系统,该系统正确地再现了结构因子中第一个尖锐衍射峰(FSDP)的大小,与迄今为止的实验结果达成了最接近的一致。我们的研究证明了机器学习势在阐明技术上重要的非晶材料的结构和性质方面具有更广泛的影响。