Madanchi Ata, Azek Emna, Zongo Karim, Béland Laurent K, Mousseau Normand, Simine Lena
Department of Physics, McGill University, Montréal, Québec H3A 2T8, Canada.
Department of Chemistry, McGill University, Montréal, Québec H3A 0B8, Canada.
ACS Phys Chem Au. 2024 Dec 31;5(1):3-16. doi: 10.1021/acsphyschemau.4c00063. eCollection 2025 Jan 22.
Amorphous solids form an enormous and underutilized class of materials. In order to drive the discovery of new useful amorphous materials further we need to achieve a closer convergence between computational and experimental methods. In this review, we highlight some of the important gaps between computational simulations and experiments, discuss popular state-of-the-art computational techniques such as the Activation Relaxation Technique (ARTn) and Reverse Monte Carlo (RMC), and introduce more recent advances: machine learning interatomic potentials (MLIPs) and generative machine learning for simulations of amorphous matter (e.g., MAP). Examples are drawn from amorphous silicon and silica literature as well as from molecular glasses. Our outlook stresses the need for new computational methods to extend the time- and length-scales accessible through numerical simulations.
非晶态固体构成了一类庞大且未得到充分利用的材料。为了进一步推动新型有用非晶态材料的发现,我们需要在计算方法和实验方法之间实现更紧密的融合。在本综述中,我们强调了计算模拟与实验之间的一些重要差距,讨论了诸如激活弛豫技术(ARTn)和反向蒙特卡罗(RMC)等流行的先进计算技术,并介绍了最新进展:机器学习原子间势(MLIPs)和用于非晶态物质模拟的生成式机器学习(例如MAP)。实例取自非晶硅和二氧化硅文献以及分子玻璃。我们的展望强调了需要新的计算方法来扩展通过数值模拟可达到的时间和长度尺度。