Nat Mater. 2013 Feb;12(2):123-7. doi: 10.1038/nmat3490. Epub 2012 Nov 25.
Crystal structure solution from diffraction experiments is one of the most fundamental tasks in materials science, chemistry, physics and geology. Unfortunately, numerous factors render this process labour intensive and error prone. Experimental conditions, such as high pressure or structural metastability, often complicate characterization. Furthermore, many materials of great modern interest, such as batteries and hydrogen storage media, contain light elements such as Li and H that only weakly scatter X-rays. Finally, structural refinements generally require significant human input and intuition, as they rely on good initial guesses for the target structure. To address these many challenges, we demonstrate a new hybrid approach, first-principles-assisted structure solution (FPASS), which combines experimental diffraction data, statistical symmetry information and first-principles-based algorithmic optimization to automatically solve crystal structures. We demonstrate the broad utility of FPASS to clarify four important crystal structure debates: the hydrogen storage candidates MgNH and NH(3)BH(3); Li(2)O(2), relevant to Li-air batteries; and high-pressure silane, SiH(4).
从衍射实验中确定晶体结构是材料科学、化学、物理和地质学中最基本的任务之一。不幸的是,许多因素使得这个过程既费力又容易出错。实验条件,如高压或结构亚稳性,通常会使特性复杂化。此外,许多现代感兴趣的材料,如电池和储氢介质,都含有像 Li 和 H 这样的轻元素,它们对 X 射线的散射很弱。最后,结构精修通常需要大量的人力投入和直觉,因为它们依赖于对目标结构的良好初始猜测。为了解决这些许多挑战,我们展示了一种新的混合方法,第一性原理辅助结构求解(FPASS),它结合了实验衍射数据、统计对称性信息和基于第一性原理的算法优化,以自动求解晶体结构。我们展示了 FPASS 的广泛适用性,以澄清四个重要的晶体结构争议:储氢候选物 MgNH 和 NH(3)BH(3);与 Li 空气电池相关的 Li(2)O(2);以及高压硅烷 SiH(4)。