Suppr超能文献

叶绿体信号识别颗粒54千道尔顿亚基中的结构域组织

Domain Organization in the 54-kDa Subunit of the Chloroplast Signal Recognition Particle.

作者信息

Henderson Rory C, Gao Feng, Jayanthi Srinivas, Kight Alicia, Sharma Priyanka, Goforth Robyn L, Heyes Colin D, Henry Ralph L, Suresh Kumar Thallapuranam Krishnaswamy

机构信息

Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas.

Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas.

出版信息

Biophys J. 2016 Sep 20;111(6):1151-1162. doi: 10.1016/j.bpj.2016.08.004.

Abstract

Chloroplast signal recognition particle (cpSRP) is a heterodimer composed of an evolutionarily conserved 54-kDa GTPase (cpSRP54) and a unique 43-kDa subunit (cpSRP43) responsible for delivering light-harvesting chlorophyll binding protein to the thylakoid membrane. While a nearly complete three-dimensional structure of cpSRP43 has been determined, no high-resolution structure is yet available for cpSRP54. In this study, we developed and examined an in silico three-dimensional model of the structure of cpSRP54 by homology modeling using cytosolic homologs. Model selection was guided by single-molecule Förster resonance energy transfer experiments, which revealed the presence of at least two distinct conformations. Small angle x-ray scattering showed that the linking region among the GTPase (G-domain) and methionine-rich (M-domain) domains, an M-domain loop, and the cpSRP43 binding C-terminal extension of cpSRP54 are predominantly disordered. Interestingly, the linker and loop segments were observed to play an important role in organizing the domain arrangement of cpSRP54. Further, deletion of the finger loop abolished loading of the cpSRP cargo, light-harvesting chlorophyll binding protein. These data highlight important structural dynamics relevant to cpSRP54's role in the post- and cotranslational signaling processes.

摘要

叶绿体信号识别颗粒(cpSRP)是一种异源二聚体,由一个进化上保守的54 kDa GTP酶(cpSRP54)和一个独特的43 kDa亚基(cpSRP43)组成,负责将捕光叶绿素结合蛋白输送到类囊体膜。虽然cpSRP43的三维结构已基本确定,但cpSRP54的高分辨率结构尚未获得。在本研究中,我们通过使用胞质同源物进行同源建模,开发并检验了cpSRP54结构的计算机三维模型。模型选择以单分子Förster共振能量转移实验为指导,该实验揭示了至少两种不同构象的存在。小角X射线散射表明,GTP酶(G结构域)和富含甲硫氨酸(M结构域)结构域之间的连接区域、一个M结构域环以及cpSRP54与cpSRP43结合的C末端延伸主要是无序的。有趣的是,观察到连接子和环段在组织cpSRP54的结构域排列中起重要作用。此外,指状环的缺失消除了cpSRP货物(捕光叶绿素结合蛋白)的装载。这些数据突出了与cpSRP54在翻译后和共翻译信号传导过程中的作用相关的重要结构动力学。

相似文献

1
Domain Organization in the 54-kDa Subunit of the Chloroplast Signal Recognition Particle.
Biophys J. 2016 Sep 20;111(6):1151-1162. doi: 10.1016/j.bpj.2016.08.004.
3
Assembly of chloroplast signal recognition particle involves structural rearrangement in cpSRP43.
J Mol Biol. 2008 Aug 1;381(1):49-60. doi: 10.1016/j.jmb.2008.05.065. Epub 2008 Jun 3.
4
Functional analysis of the protein-interacting domains of chloroplast SRP43.
J Biol Chem. 2001 Jul 6;276(27):24654-60. doi: 10.1074/jbc.M100153200. Epub 2001 Apr 16.
9
Functional characterization of recombinant chloroplast signal recognition particle.
J Biol Chem. 2001 Jul 27;276(30):27778-86. doi: 10.1074/jbc.M103470200. Epub 2001 May 16.
10
Regulation of the GTPase cycle in post-translational signal recognition particle-based protein targeting involves cpSRP43.
J Biol Chem. 2004 Oct 8;279(41):43077-84. doi: 10.1074/jbc.M401600200. Epub 2004 Aug 2.

引用本文的文献

2
PALE-GREEN LEAF 1, a rice cpSRP54 protein, is essential for the assembly of the PSI-LHCI supercomplex.
Plant Direct. 2022 Aug 7;6(8):e436. doi: 10.1002/pld3.436. eCollection 2022 Aug.
4
Transient local secondary structure in the intrinsically disordered C-term of the Albino3 insertase.
Biophys J. 2021 Nov 16;120(22):4992-5004. doi: 10.1016/j.bpj.2021.10.013. Epub 2021 Oct 16.
5
Ribosome-Associated Chloroplast SRP54 Enables Efficient Cotranslational Membrane Insertion of Key Photosynthetic Proteins.
Plant Cell. 2019 Nov;31(11):2734-2750. doi: 10.1105/tpc.19.00169. Epub 2019 Aug 23.
6
Molecular mechanism of SRP-dependent light-harvesting protein transport to the thylakoid membrane in plants.
Photosynth Res. 2018 Dec;138(3):303-313. doi: 10.1007/s11120-018-0544-6. Epub 2018 Jun 28.

本文引用的文献

1
Regulation of Structural Dynamics within a Signal Recognition Particle Promotes Binding of Protein Targeting Substrates.
J Biol Chem. 2015 Jun 19;290(25):15462-15474. doi: 10.1074/jbc.M114.624346. Epub 2015 Apr 27.
2
Upgrade of MacCHESS facility for X-ray scattering of biological macromolecules in solution.
J Synchrotron Radiat. 2015 Jan;22(1):180-6. doi: 10.1107/S1600577514020360. Epub 2015 Jan 1.
3
Activities at the Universal Protein Resource (UniProt).
Nucleic Acids Res. 2014 Jan;42(Database issue):D191-8. doi: 10.1093/nar/gkt1140. Epub 2013 Nov 18.
4
Structural basis of signal sequence surveillance and selection by the SRP-FtsY complex.
Nat Struct Mol Biol. 2013 May;20(5):604-10. doi: 10.1038/nsmb.2546. Epub 2013 Apr 7.
5
Signal recognition particle: an essential protein-targeting machine.
Annu Rev Biochem. 2013;82:693-721. doi: 10.1146/annurev-biochem-072711-164732. Epub 2013 Feb 13.
7
Fingerloop activates cargo delivery and unloading during cotranslational protein targeting.
Mol Biol Cell. 2013 Jan;24(2):63-73. doi: 10.1091/mbc.E12-06-0434. Epub 2012 Nov 7.
8
Network models reveal stability and structural rearrangement of signal recognition particle.
J Biomol Struct Dyn. 2012;30(2):150-9. doi: 10.1080/07391102.2012.677765.
10
Chromodomains read the arginine code of post-translational targeting.
Nat Struct Mol Biol. 2012 Jan 8;19(2):260-3. doi: 10.1038/nsmb.2196.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验