Suppr超能文献

心肌细胞内膜下钠离子浓度的电生理测定

Electrophysiological Determination of Submembrane Na(+) Concentration in Cardiac Myocytes.

作者信息

Hegyi Bence, Bányász Tamás, Shannon Thomas R, Chen-Izu Ye, Izu Leighton T

机构信息

Department of Pharmacology, University of California, Davis, Davis, California.

Department of Pharmacology, University of California, Davis, Davis, California; Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.

出版信息

Biophys J. 2016 Sep 20;111(6):1304-1315. doi: 10.1016/j.bpj.2016.08.008.

Abstract

In the heart, Na(+) is a key modulator of the action potential, Ca(2+) homeostasis, energetics, and contractility. Because Na(+) currents and cotransport fluxes depend on the Na(+) concentration in the submembrane region, it is necessary to accurately estimate the submembrane Na(+) concentration ([Na(+)]sm). Current methods using Na(+)-sensitive fluorescent indicators or Na(+) -sensitive electrodes cannot measure [Na(+)]sm. However, electrophysiology methods are ideal for measuring [Na(+)]sm. In this article, we develop patch-clamp protocols and experimental conditions to determine the upper bound of [Na(+)]sm at the peak of action potential and its lower bound at the resting state. During the cardiac cycle, the value of [Na(+)]sm is constrained within these bounds. We conducted experiments in rabbit ventricular myocytes at body temperature and found that 1) at a low pacing frequency of 0.5 Hz, the upper and lower bounds converge at 9 mM, constraining the [Na(+)]sm value to ∼9 mM; 2) at 2 Hz pacing frequency, [Na(+)]sm is bounded between 9 mM at resting state and 11.5 mM; and 3) the cells can maintain [Na(+)]sm to the above values, despite changes in the pipette Na(+) concentration, showing autoregulation of Na(+) in beating cardiomyocytes.

摘要

在心脏中,钠离子(Na⁺)是动作电位、钙离子(Ca²⁺)稳态、能量代谢和收缩性的关键调节因子。由于Na⁺电流和协同转运通量取决于细胞膜下区域的Na⁺浓度,因此准确估计细胞膜下Na⁺浓度([Na⁺]sm)很有必要。目前使用Na⁺敏感荧光指示剂或Na⁺敏感电极的方法无法测量[Na⁺]sm。然而,电生理方法是测量[Na⁺]sm的理想方法。在本文中,我们开发了膜片钳实验方案和实验条件,以确定动作电位峰值时[Na⁺]sm的上限及其静息状态下的下限。在心动周期中,[Na⁺]sm的值被限制在这些界限内。我们在体温下对兔心室肌细胞进行了实验,发现:1)在0.5Hz的低起搏频率下,上限和下限在9mM处收敛,将[Na⁺]sm值限制在约9mM;2)在2Hz起搏频率下,[Na⁺]sm在静息状态下为9mM至11.5mM之间;3)尽管移液管中Na⁺浓度发生变化,细胞仍能将[Na⁺]sm维持在上述值,表明搏动心肌细胞中Na⁺的自动调节。

相似文献

1
Electrophysiological Determination of Submembrane Na(+) Concentration in Cardiac Myocytes.
Biophys J. 2016 Sep 20;111(6):1304-1315. doi: 10.1016/j.bpj.2016.08.008.
3
Intracellular sodium determines frequency-dependent alterations in contractility in hypertrophied feline ventricular myocytes.
Am J Physiol Heart Circ Physiol. 2007 Feb;292(2):H1129-38. doi: 10.1152/ajpheart.00375.2006. Epub 2006 Sep 29.
5
Cardiac submembrane [Na+] transients sensed by Na+-Ca2+ exchange current.
Circ Res. 2003 May 16;92(9):950-2. doi: 10.1161/01.RES.0000071747.61468.7F. Epub 2003 Apr 17.
6
High [Na+]i in cardiomyocytes from rainbow trout.
Am J Physiol Regul Integr Comp Physiol. 2007 Aug;293(2):R861-6. doi: 10.1152/ajpregu.00198.2007. Epub 2007 May 16.
8
Bisoprolol inhibits sodium current in ventricular myocytes of rats with diastolic heart failure.
Clin Exp Pharmacol Physiol. 2007 Aug;34(8):714-9. doi: 10.1111/j.1440-1681.2007.04628.x.
9
Actions of emigrated neutrophils on Na(+) and K(+) currents in rat ventricular myocytes.
Prog Biophys Mol Biol. 2006 Jan-Apr;90(1-3):249-69. doi: 10.1016/j.pbiomolbio.2005.07.003. Epub 2005 Aug 9.
10
Quantification of calcium entry at the T-tubules and surface membrane in rat ventricular myocytes.
Biophys J. 2006 Jan 1;90(1):381-9. doi: 10.1529/biophysj.105.069013. Epub 2005 Oct 7.

引用本文的文献

1
Late Sodium Current of the Heart: Where Do We Stand and Where Are We Going?
Pharmaceuticals (Basel). 2022 Feb 15;15(2):231. doi: 10.3390/ph15020231.
3
Intracellular Na Modulates Pacemaking Activity in Murine Sinoatrial Node Myocytes: An Analysis.
Int J Mol Sci. 2021 May 26;22(11):5645. doi: 10.3390/ijms22115645.
4
Sarcoplasmic reticulum-mitochondria communication; implications for cardiac arrhythmia.
J Mol Cell Cardiol. 2021 Jul;156:105-113. doi: 10.1016/j.yjmcc.2021.04.002. Epub 2021 Apr 17.
5
Altered K current profiles underlie cardiac action potential shortening in hyperkalemia and β-adrenergic stimulation.
Can J Physiol Pharmacol. 2019 Aug;97(8):773-780. doi: 10.1139/cjpp-2019-0056. Epub 2019 May 15.
6
Estimating the probabilities of rare arrhythmic events in multiscale computational models of cardiac cells and tissue.
PLoS Comput Biol. 2017 Nov 16;13(11):e1005783. doi: 10.1371/journal.pcbi.1005783. eCollection 2017 Nov.

本文引用的文献

1
Dynamics of the late Na(+) current during cardiac action potential and its contribution to afterdepolarizations.
J Mol Cell Cardiol. 2013 Nov;64:59-68. doi: 10.1016/j.yjmcc.2013.08.010. Epub 2013 Sep 6.
2
Na⁺ transport in the normal and failing heart - remember the balance.
J Mol Cell Cardiol. 2013 Aug;61:2-10. doi: 10.1016/j.yjmcc.2013.04.011. Epub 2013 Apr 19.
3
Profile of L-type Ca(2+) current and Na(+)/Ca(2+) exchange current during cardiac action potential in ventricular myocytes.
Heart Rhythm. 2012 Jan;9(1):134-42. doi: 10.1016/j.hrthm.2011.08.029. Epub 2011 Aug 30.
4
A mathematical treatment of integrated Ca dynamics within the ventricular myocyte.
Biophys J. 2004 Nov;87(5):3351-71. doi: 10.1529/biophysj.104.047449. Epub 2004 Sep 3.
5
Na/K pump-induced [Na](i) gradients in rat ventricular myocytes measured with two-photon microscopy.
Biophys J. 2004 Aug;87(2):1360-8. doi: 10.1529/biophysj.103.037895.
6
Intracellular Na(+) concentration is elevated in heart failure but Na/K pump function is unchanged.
Circulation. 2002 May 28;105(21):2543-8. doi: 10.1161/01.cir.0000016701.85760.97.
7
Intracellular [Na+] and Na+ pump rate in rat and rabbit ventricular myocytes.
J Physiol. 2002 Feb 15;539(Pt 1):133-43. doi: 10.1113/jphysiol.2001.012940.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验