Simunovic Mijo, Evergren Emma, Golushko Ivan, Prévost Coline, Renard Henri-François, Johannes Ludger, McMahon Harvey T, Lorman Vladimir, Voth Gregory A, Bassereau Patricia
Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, F-75005 Paris, France; Department of Chemistry, The University of Chicago, Chicago, IL 60637; Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637; James Franck Institute, The University of Chicago, Chicago, IL 60637; Computation Institute, The University of Chicago, Chicago, IL 60637;
Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, United Kingdom.
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11226-11231. doi: 10.1073/pnas.1606943113. Epub 2016 Sep 21.
Bin/Amphiphysin/Rvs (BAR) domain proteins control the curvature of lipid membranes in endocytosis, trafficking, cell motility, the formation of complex subcellular structures, and many other cellular phenomena. They form 3D assemblies that act as molecular scaffolds to reshape the membrane and alter its mechanical properties. It is unknown, however, how a protein scaffold forms and how BAR domains interact in these assemblies at protein densities relevant for a cell. In this work, we use various experimental, theoretical, and simulation approaches to explore how BAR proteins organize to form a scaffold on a membrane nanotube. By combining quantitative microscopy with analytical modeling, we demonstrate that a highly curving BAR protein endophilin nucleates its scaffolds at the ends of a membrane tube, contrary to a weaker curving protein centaurin, which binds evenly along the tube's length. Our work implies that the nature of local protein-membrane interactions can affect the specific localization of proteins on membrane-remodeling sites. Furthermore, we show that amphipathic helices are dispensable in forming protein scaffolds. Finally, we explore a possible molecular structure of a BAR-domain scaffold using coarse-grained molecular dynamics simulations. Together with fluorescence microscopy, the simulations show that proteins need only to cover 30-40% of a tube's surface to form a rigid assembly. Our work provides mechanical and structural insights into the way BAR proteins may sculpt the membrane as a high-order cooperative assembly in important biological processes.
Bin/Amphiphysin/Rvs(BAR)结构域蛋白在内吞作用、运输、细胞运动、复杂亚细胞结构的形成以及许多其他细胞现象中控制脂质膜的曲率。它们形成三维组装体,作为分子支架重塑膜并改变其机械性能。然而,目前尚不清楚蛋白质支架是如何形成的,以及在与细胞相关的蛋白质密度下,BAR结构域在这些组装体中是如何相互作用的。在这项工作中,我们使用各种实验、理论和模拟方法来探索BAR蛋白如何在膜纳米管上组织形成支架。通过将定量显微镜与分析模型相结合,我们证明,与较弱弯曲的蛋白centaurin不同,高度弯曲的BAR蛋白内吞蛋白在膜管末端形成其支架,centaurin沿管的长度均匀结合。我们的工作表明,局部蛋白质-膜相互作用的性质可以影响蛋白质在膜重塑位点上的特定定位。此外,我们表明两亲螺旋在形成蛋白质支架中是可有可无的。最后,我们使用粗粒度分子动力学模拟探索了BAR结构域支架的可能分子结构。与荧光显微镜一起,模拟表明蛋白质只需要覆盖管表面的30-40%就能形成刚性组装体。我们的工作为BAR蛋白在重要生物过程中作为高阶协同组装体塑造膜的方式提供了力学和结构上的见解。