Suppr超能文献

“默认模式”网络如何促进语义认知?

How does the "default mode" network contribute to semantic cognition?

机构信息

Department of Neurology, Medical College of Wisconsin, USA; Department of Biomedical Engineering, Medical College of Wisconsin, USA.

Department of Neurology, Medical College of Wisconsin, USA; Department of Biophysics, Medical College of Wisconsin, USA.

出版信息

Brain Lang. 2024 May;252:105405. doi: 10.1016/j.bandl.2024.105405. Epub 2024 Apr 4.

Abstract

This review examines whether and how the "default mode" network (DMN) contributes to semantic processing. We review evidence implicating the DMN in the processing of individual word meanings and in sentence- and discourse-level semantics. Next, we argue that the areas comprising the DMN contribute to semantic processing by coordinating and integrating the simultaneous activity of local neuronal ensembles across multiple unimodal and multimodal cortical regions, creating a transient, global neuronal ensemble. The resulting ensemble implements an integrated simulation of phenomenological experience - that is, an embodied situation model - constructed from various modalities of experiential memory traces. These situation models, we argue, are necessary not only for semantic processing but also for aspects of cognition that are not traditionally considered semantic. Although many aspects of this proposal remain provisional, we believe it provides new insights into the relationships between semantic and non-semantic cognition and into the functions of the DMN.

摘要

这篇综述考察了“默认模式网络”(DMN)是否以及如何促进语义处理。我们回顾了 DMN 参与单个单词意义处理以及句子和语篇水平语义处理的证据。接下来,我们认为,组成 DMN 的各个区域通过协调和整合来自多个单模态和多模态皮质区域的局部神经元集合的同时活动,来促进语义处理,从而创建一个短暂的、全局的神经元集合。由此产生的集合实现了对现象经验的综合模拟,即从各种经验记忆痕迹的模态构建的具身情境模型。我们认为,这些情境模型不仅是语义处理所必需的,而且对于传统上不被认为是语义的认知方面也是必需的。尽管这一观点的许多方面仍然是暂定的,但我们相信它为语义和非语义认知之间的关系以及 DMN 的功能提供了新的见解。

相似文献

1
How does the "default mode" network contribute to semantic cognition?“默认模式”网络如何促进语义认知?
Brain Lang. 2024 May;252:105405. doi: 10.1016/j.bandl.2024.105405. Epub 2024 Apr 4.
4
Both Default and Multiple-Demand Regions Represent Semantic Goal Information.默认网络和多重需求区域都代表语义目标信息。
J Neurosci. 2021 Apr 21;41(16):3679-3691. doi: 10.1523/JNEUROSCI.1782-20.2021. Epub 2021 Mar 4.
6
The default mode network in cognition: a topographical perspective.认知中的默认模式网络:一种地形学视角。
Nat Rev Neurosci. 2021 Aug;22(8):503-513. doi: 10.1038/s41583-021-00474-4. Epub 2021 Jul 5.
7
The role of default mode network in semantic cue integration.默认模式网络在语义线索整合中的作用。
Neuroimage. 2020 Oct 1;219:117019. doi: 10.1016/j.neuroimage.2020.117019. Epub 2020 Jun 6.

引用本文的文献

本文引用的文献

2
20 years of the default mode network: A review and synthesis.20 年的默认模式网络:回顾与综合。
Neuron. 2023 Aug 16;111(16):2469-2487. doi: 10.1016/j.neuron.2023.04.023. Epub 2023 May 10.
4
Meta-analytic evidence for a novel hierarchical model of conceptual processing.概念加工新层次模型的元分析证据
Neurosci Biobehav Rev. 2023 Jan;144:104994. doi: 10.1016/j.neubiorev.2022.104994. Epub 2022 Dec 9.
5
Rethinking retrosplenial cortex: Perspectives and predictions.重新审视压后皮质:观点与预测
Neuron. 2023 Jan 18;111(2):150-175. doi: 10.1016/j.neuron.2022.11.006. Epub 2022 Dec 1.
8
Replay, the default mode network and the cascaded memory systems model.回放、默认模式网络和级联记忆系统模型。
Nat Rev Neurosci. 2022 Oct;23(10):628-640. doi: 10.1038/s41583-022-00620-6. Epub 2022 Aug 15.
9
A Distributed Network for Multimodal Experiential Representation of Concepts.一种用于概念的多模式体验表示的分布式网络。
J Neurosci. 2022 Sep 14;42(37):7121-7130. doi: 10.1523/JNEUROSCI.1243-21.2022. Epub 2022 Aug 8.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验