Salzman Gabriel S, Ackerman Sarah D, Ding Chen, Koide Akiko, Leon Katherine, Luo Rong, Stoveken Hannah M, Fernandez Celia G, Tall Gregory G, Piao Xianhua, Monk Kelly R, Koide Shohei, Araç Demet
Biophysical Sciences Program, The University of Chicago, Chicago, IL 60637, USA; Medical Scientist Training Program, The University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
Neuron. 2016 Sep 21;91(6):1292-1304. doi: 10.1016/j.neuron.2016.08.022.
Adhesion G protein-coupled receptors (aGPCRs) play critical roles in diverse neurobiological processes including brain development, synaptogenesis, and myelination. aGPCRs have large alternatively spliced extracellular regions (ECRs) that likely mediate intercellular signaling; however, the precise roles of ECRs remain unclear. The aGPCR GPR56/ADGRG1 regulates both oligodendrocyte and cortical development. Accordingly, human GPR56 mutations cause myelination defects and brain malformations. Here, we determined the crystal structure of the GPR56 ECR, the first structure of any complete aGPCR ECR, in complex with an inverse-agonist monobody, revealing a GPCR-Autoproteolysis-Inducing domain and a previously unidentified domain that we term Pentraxin/Laminin/neurexin/sex-hormone-binding-globulin-Like (PLL). Strikingly, PLL domain deletion caused increased signaling and characterizes a GPR56 splice variant. Finally, we show that an evolutionarily conserved residue in the PLL domain is critical for oligodendrocyte development in vivo. Thus, our results suggest that the GPR56 ECR has unique and multifaceted regulatory functions, providing novel insights into aGPCR roles in neurobiology.
粘附G蛋白偶联受体(aGPCRs)在包括大脑发育、突触形成和髓鞘形成在内的多种神经生物学过程中发挥着关键作用。aGPCRs具有大量可变剪接的细胞外区域(ECRs),这些区域可能介导细胞间信号传导;然而,ECRs的确切作用仍不清楚。aGPCR GPR56/ADGRG1调节少突胶质细胞和皮质发育。因此,人类GPR56突变会导致髓鞘形成缺陷和脑畸形。在这里,我们确定了GPR56 ECR的晶体结构,这是任何完整aGPCR ECR的首个结构,它与一种反向激动剂单克隆抗体复合,揭示了一个GPCR自催化诱导结构域和一个我们称为五聚体/层粘连蛋白/神经纤毛蛋白/性激素结合球蛋白样(PLL)的先前未鉴定结构域。引人注目的是,PLL结构域缺失导致信号增加,并表征了一种GPR56剪接变体。最后,我们表明PLL结构域中一个进化保守的残基对体内少突胶质细胞发育至关重要。因此,我们的结果表明GPR56 ECR具有独特和多方面的调节功能,为aGPCR在神经生物学中的作用提供了新的见解。