Suppr超能文献

弥合体外与体内RNA折叠之间的差距。

Bridging the gap between in vitro and in vivo RNA folding.

作者信息

Leamy Kathleen A, Assmann Sarah M, Mathews David H, Bevilacqua Philip C

机构信息

Department of Chemistry,Pennsylvania State University,University Park, PA 16802,USA.

Center for RNA Molecular Biology,Pennsylvania State University,University Park,PA 16802,USA.

出版信息

Q Rev Biophys. 2016 Jan;49:e10. doi: 10.1017/S003358351600007X. Epub 2016 Jun 24.

Abstract

Deciphering the folding pathways and predicting the structures of complex three-dimensional biomolecules is central to elucidating biological function. RNA is single-stranded, which gives it the freedom to fold into complex secondary and tertiary structures. These structures endow RNA with the ability to perform complex chemistries and functions ranging from enzymatic activity to gene regulation. Given that RNA is involved in many essential cellular processes, it is critical to understand how it folds and functions in vivo. Within the last few years, methods have been developed to probe RNA structures in vivo and genome-wide. These studies reveal that RNA often adopts very different structures in vivo and in vitro, and provide profound insights into RNA biology. Nonetheless, both in vitro and in vivo approaches have limitations: studies in the complex and uncontrolled cellular environment make it difficult to obtain insight into RNA folding pathways and thermodynamics, and studies in vitro often lack direct cellular relevance, leaving a gap in our knowledge of RNA folding in vivo. This gap is being bridged by biophysical and mechanistic studies of RNA structure and function under conditions that mimic the cellular environment. To date, most artificial cytoplasms have used various polymers as molecular crowding agents and a series of small molecules as cosolutes. Studies under such in vivo-like conditions are yielding fresh insights, such as cooperative folding of functional RNAs and increased activity of ribozymes. These observations are accounted for in part by molecular crowding effects and interactions with other molecules. In this review, we report milestones in RNA folding in vitro and in vivo and discuss ongoing experimental and computational efforts to bridge the gap between these two conditions in order to understand how RNA folds in the cell.

摘要

解析复杂三维生物分子的折叠途径并预测其结构是阐明生物学功能的核心。RNA是单链的,这使其能够自由折叠成复杂的二级和三级结构。这些结构赋予RNA执行复杂化学过程和功能的能力,范围从酶活性到基因调控。鉴于RNA参与许多重要的细胞过程,了解其在体内如何折叠和发挥功能至关重要。在过去几年中,已开发出在体内和全基因组范围内探测RNA结构的方法。这些研究表明,RNA在体内和体外通常具有非常不同的结构,并为RNA生物学提供了深刻见解。尽管如此,体外和体内方法都有局限性:在复杂且不受控制的细胞环境中的研究难以深入了解RNA折叠途径和热力学,而体外研究往往缺乏直接的细胞相关性,在我们对RNA在体内折叠的认识上留下了空白。通过在模拟细胞环境的条件下对RNA结构和功能进行生物物理和机制研究,这个空白正在被填补。迄今为止,大多数人工细胞质使用各种聚合物作为分子拥挤剂,并使用一系列小分子作为共溶质。在这种类似体内的条件下进行的研究正在产生新的见解,例如功能性RNA的协同折叠和核酶活性的增加。这些观察结果部分归因于分子拥挤效应以及与其他分子的相互作用。在本综述中,我们报告了RNA在体外和体内折叠的里程碑,并讨论了为弥合这两种条件之间的差距以了解RNA在细胞中如何折叠而正在进行的实验和计算工作。

相似文献

1
Bridging the gap between in vitro and in vivo RNA folding.弥合体外与体内RNA折叠之间的差距。
Q Rev Biophys. 2016 Jan;49:e10. doi: 10.1017/S003358351600007X. Epub 2016 Jun 24.
6
The dynamic nature of RNA as key to understanding riboswitch mechanisms.RNA 的动态本质是理解核酶机制的关键。
Acc Chem Res. 2011 Dec 20;44(12):1339-48. doi: 10.1021/ar200035g. Epub 2011 Jun 16.
8
Fast folding of RNA pseudoknots initiated by laser temperature-jump.激光热激引发的 RNA 发夹环的快速折叠。
J Am Chem Soc. 2011 Nov 23;133(46):18767-74. doi: 10.1021/ja205737v. Epub 2011 Nov 1.

引用本文的文献

2
RNA elements and their biotechnological applications in plants.RNA元件及其在植物中的生物技术应用。
New Phytol. 2025 Sep;247(6):2517-2537. doi: 10.1111/nph.70400. Epub 2025 Jul 27.
8
9
Protocell Effects on RNA Folding, Function, and Evolution.原核细胞对 RNA 折叠、功能和进化的影响。
Acc Chem Res. 2024 Aug 6;57(15):2058-2066. doi: 10.1021/acs.accounts.4c00174. Epub 2024 Jul 15.

本文引用的文献

2
Predicting RNA secondary structures from sequence and probing data.从序列和探测数据预测RNA二级结构。
Methods. 2016 Jul 1;103:86-98. doi: 10.1016/j.ymeth.2016.04.004. Epub 2016 Apr 5.
5
RNA Hairpin Folding in the Crowded Cell.拥挤细胞中的RNA发夹折叠
Angew Chem Int Ed Engl. 2016 Feb 24;55(9):3224-8. doi: 10.1002/anie.201510847. Epub 2016 Feb 2.
6
Computational modeling of RNA 3D structures and interactions.RNA三维结构与相互作用的计算建模。
Curr Opin Struct Biol. 2016 Apr;37:22-8. doi: 10.1016/j.sbi.2015.11.007. Epub 2015 Dec 12.
7
Probing Xist RNA Structure in Cells Using Targeted Structure-Seq.利用靶向结构测序技术探测细胞中的Xist RNA结构
PLoS Genet. 2015 Dec 8;11(12):e1005668. doi: 10.1371/journal.pgen.1005668. eCollection 2015 Dec.
8
Rich RNA Structure Landscapes Revealed by Mutate-and-Map Analysis.通过突变与映射分析揭示的丰富RNA结构景观
PLoS Comput Biol. 2015 Nov 13;11(11):e1004473. doi: 10.1371/journal.pcbi.1004473. eCollection 2015 Nov.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验