Iftikhar Z, Anthore A, Jezouin S, Parmentier F D, Jin Y, Cavanna A, Ouerghi A, Gennser U, Pierre F
Centre de Nanosciences et de Nanotechnologies, CNRS, Univ Paris Sud-Université Paris-Saclay, Université Paris Diderot-Sorbonne Paris Cité, 91120 Palaiseau, France.
Nat Commun. 2016 Sep 23;7:12908. doi: 10.1038/ncomms12908.
Quantum physics emerge and develop as temperature is reduced. Although mesoscopic electrical circuits constitute an outstanding platform to explore quantum behaviour, the challenge in cooling the electrons impedes their potential. The strong coupling of such micrometre-scale devices with the measurement lines, combined with the weak coupling to the substrate, makes them extremely difficult to thermalize below 10 mK and imposes in situ thermometers. Here we demonstrate electronic quantum transport at 6 mK in micrometre-scale mesoscopic circuits. The thermometry methods are established by the comparison of three in situ primary thermometers, each involving a different underlying physics. The employed combination of quantum shot noise, quantum back action of a resistive circuit and conductance oscillations of a single-electron transistor covers a remarkably broad spectrum of mesoscopic phenomena. The experiment, performed in vacuum using a standard cryogen-free dilution refrigerator, paves the way towards the sub-millikelvin range with additional thermalization and refrigeration techniques.
随着温度降低,量子物理学应运而生并不断发展。尽管介观电路是探索量子行为的杰出平台,但冷却电子所面临的挑战阻碍了其潜力的发挥。这种微米级器件与测量线的强耦合,再加上与衬底的弱耦合,使得它们极难在10 mK以下实现热平衡,并且需要使用原位温度计。在此,我们展示了微米级介观电路在6 mK下的电子量子输运。通过比较三种原位初级温度计建立了测温方法,每种温度计都涉及不同的基础物理原理。所采用的量子散粒噪声、电阻电路的量子反作用和单电子晶体管的电导振荡的组合涵盖了非常广泛的介观现象。该实验在真空中使用标准的无液氦稀释制冷机进行,通过额外的热化和制冷技术为进入亚毫开尔文范围铺平了道路。