Burrack Laura S, Hutton Hannah F, Matter Kathleen J, Clancey Shelly Applen, Liachko Ivan, Plemmons Alexandra E, Saha Amrita, Power Erica A, Turman Breanna, Thevandavakkam Mathuravani Aaditiyaa, Ay Ferhat, Dunham Maitreya J, Berman Judith
Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America.
Department of Biology, Grinnell College, Grinnell, Iowa, United States of America.
PLoS Genet. 2016 Sep 23;12(9):e1006317. doi: 10.1371/journal.pgen.1006317. eCollection 2016 Sep.
Assembly of kinetochore complexes, involving greater than one hundred proteins, is essential for chromosome segregation and genome stability. Neocentromeres, or new centromeres, occur when kinetochores assemble de novo, at DNA loci not previously associated with kinetochore proteins, and they restore chromosome segregation to chromosomes lacking a functional centromere. Neocentromeres have been observed in a number of diseases and may play an evolutionary role in adaptation or speciation. However, the consequences of neocentromere formation on chromosome missegregation rates, gene expression, and three-dimensional (3D) nuclear structure are not well understood. Here, we used Candida albicans, an organism with small, epigenetically-inherited centromeres, as a model system to study the functions of twenty different neocentromere loci along a single chromosome, chromosome 5. Comparison of neocentromere properties relative to native centromere functions revealed that all twenty neocentromeres mediated chromosome segregation, albeit to different degrees. Some neocentromeres also caused reduced levels of transcription from genes found within the neocentromere region. Furthermore, like native centromeres, neocentromeres clustered in 3D with active/functional centromeres, indicating that formation of a new centromere mediates the reorganization of 3D nuclear architecture. This demonstrates that centromere clustering depends on epigenetically defined function and not on the primary DNA sequence, and that neocentromere function is independent of its distance from the native centromere position. Together, the results show that a neocentromere can form at many loci along a chromosome and can support the assembly of a functional kinetochore that exhibits native centromere functions including chromosome segregation accuracy and centromere clustering within the nucleus.
动粒复合体的组装涉及一百多种蛋白质,对染色体分离和基因组稳定性至关重要。当动粒在以前未与动粒蛋白相关联的DNA位点从头组装时,新着丝粒就会出现,它们能恢复缺乏功能性着丝粒的染色体的分离。新着丝粒已在多种疾病中被观察到,并且可能在适应或物种形成中发挥进化作用。然而,新着丝粒形成对染色体错分离率、基因表达和三维(3D)核结构的影响尚未得到充分了解。在这里,我们使用白色念珠菌(一种具有小的、表观遗传遗传着丝粒的生物体)作为模型系统,来研究沿着单条染色体(5号染色体)的20个不同新着丝粒位点的功能。将新着丝粒特性与天然着丝粒功能进行比较后发现,所有20个新着丝粒都介导了染色体分离,尽管程度不同。一些新着丝粒还导致新着丝粒区域内基因的转录水平降低。此外,与天然着丝粒一样,新着丝粒在3D空间中与活跃/功能性着丝粒聚集在一起,这表明新着丝粒的形成介导了3D核结构的重组。这表明着丝粒聚集取决于表观遗传定义的功能,而不是初级DNA序列,并且新着丝粒功能与其距天然着丝粒位置的距离无关。总之,结果表明新着丝粒可以在染色体上的许多位点形成,并能支持功能性动粒的组装,该动粒具有天然着丝粒功能,包括染色体分离准确性和核内着丝粒聚集。