Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, C3BI USR 3756, Paris, France.
Sorbonne Université, Collège Doctoral, F-75005, Paris, France.
Nat Commun. 2020 Nov 16;11(1):5795. doi: 10.1038/s41467-020-19562-7.
Chromosomes of all species studied so far display a variety of higher-order organisational features, such as self-interacting domains or loops. These structures, which are often associated to biological functions, form distinct, visible patterns on genome-wide contact maps generated by chromosome conformation capture approaches such as Hi-C. Here we present Chromosight, an algorithm inspired from computer vision that can detect patterns in contact maps. Chromosight has greater sensitivity than existing methods on synthetic simulated data, while being faster and applicable to any type of genomes, including bacteria, viruses, yeasts and mammals. Our method does not require any prior training dataset and works well with default parameters on data generated with various protocols.
迄今为止,所有已研究物种的染色体都显示出多种高级组织结构特征,例如自我相互作用的结构域或环。这些结构通常与生物学功能相关,在由染色体构象捕获方法(如 Hi-C)生成的全基因组接触图谱上形成独特的、可见的模式。在这里,我们介绍了 Chromosight,这是一种受计算机视觉启发的算法,可以检测接触图谱中的模式。与现有的方法相比,Chromosight 在合成模拟数据上具有更高的灵敏度,同时速度更快,适用于包括细菌、病毒、酵母和哺乳动物在内的任何类型的基因组。我们的方法不需要任何预先的训练数据集,并且在使用各种方案生成的数据上,使用默认参数也能很好地工作。