Suppr超能文献

识别中风后针对性步态康复的候选者:通过生物力学信息表征实现更好的预测

Identifying candidates for targeted gait rehabilitation after stroke: better prediction through biomechanics-informed characterization.

作者信息

Awad Louis N, Reisman Darcy S, Pohlig Ryan T, Binder-Macleod Stuart A

机构信息

Department of Physical Therapy and Athletic Training, College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, 02215, USA.

Wyss Institute For Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA.

出版信息

J Neuroeng Rehabil. 2016 Sep 23;13(1):84. doi: 10.1186/s12984-016-0188-8.

Abstract

BACKGROUND

Walking speed has been used to predict the efficacy of gait training; however, poststroke motor impairments are heterogeneous and different biomechanical strategies may underlie the same walking speed. Identifying which individuals will respond best to a particular gait rehabilitation program using walking speed alone may thus be limited. The objective of this study was to determine if, beyond walking speed, participants' baseline ability to generate propulsive force from their paretic limbs (paretic propulsion) influences the improvements in walking speed resulting from a paretic propulsion-targeting gait intervention.

METHODS

Twenty seven participants >6 months poststroke underwent a 12-week locomotor training program designed to target deficits in paretic propulsion through the combination of fast walking with functional electrical stimulation to the paretic ankle musculature (FastFES). The relationship between participants' baseline usual walking speed (UWS), maximum walking speed (MWS), and paretic propulsion (prop) versus improvements in usual walking speed (∆UWS) and maximum walking speed (∆MWS) were evaluated in moderated regression models.

RESULTS

UWS and MWS were, respectively, poor predictors of ΔUWS (R  = 0.24) and ΔMWS (R  = 0.01). Paretic propulsion × walking speed interactions (UWS × prop and MWS × prop) were observed in each regression model (R s = 0.61 and 0.49 for ∆UWS and ∆MWS, respectively), revealing that slower individuals with higher utilization of the paretic limb for forward propulsion responded best to FastFES training and were the most likely to achieve clinically important differences.

CONCLUSIONS

Characterizing participants based on both their walking speed and ability to generate paretic propulsion is a markedly better approach to predicting walking recovery following targeted gait rehabilitation than using walking speed alone.

摘要

背景

步行速度已被用于预测步态训练的效果;然而,脑卒中后的运动障碍具有异质性,相同的步行速度可能存在不同的生物力学策略。因此,仅使用步行速度来确定哪些个体对特定的步态康复计划反应最佳可能存在局限性。本研究的目的是确定除步行速度外,参与者患侧肢体产生推进力的基线能力(患侧推进力)是否会影响针对患侧推进力的步态干预所带来的步行速度改善。

方法

27名脑卒中后6个月以上的参与者接受了为期12周的运动训练计划,该计划旨在通过将快走与对患侧踝关节肌肉进行功能性电刺激相结合(快速功能性电刺激)来针对患侧推进力的缺陷。在调节回归模型中评估参与者的基线日常步行速度(UWS)、最大步行速度(MWS)和患侧推进力(prop)与日常步行速度改善(∆UWS)和最大步行速度改善(∆MWS)之间的关系。

结果

UWS和MWS分别是∆UWS(R = 0.24)和∆MWS(R = 0.01)的较差预测指标。在每个回归模型中均观察到患侧推进力×步行速度的相互作用(UWS×prop和MWS×prop)(∆UWS和∆MWS的R分别为0.61和0.49),表明在向前推进中更多利用患侧肢体的较慢个体对快速功能性电刺激训练反应最佳,并且最有可能实现具有临床意义的差异。

结论

与仅使用步行速度相比,基于步行速度和产生患侧推进力的能力对参与者进行特征描述是预测针对性步态康复后步行恢复的明显更好方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57cf/5035477/34a85d4cbdb3/12984_2016_188_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验