Wang Peng, Grimm Bernhard
Department of Plant Physiology, Humboldt University Berlin, 10115 Berlin, Germany.
Department of Plant Physiology, Humboldt University Berlin, 10115 Berlin, Germany
Plant Physiol. 2016 Nov;172(3):1519-1531. doi: 10.1104/pp.16.01009. Epub 2016 Sep 23.
State transitions in photosynthesis provide for the dynamic allocation of a mobile fraction of light-harvesting complex II (LHCII) to photosystem II (PSII) in state I and to photosystem I (PSI) in state II. In the state I-to-state II transition, LHCII is phosphorylated by STN7 and associates with PSI to favor absorption cross-section of PSI. Here, we used Arabidopsis (Arabidopsis thaliana) mutants with defects in chlorophyll (Chl) b biosynthesis or in the chloroplast signal recognition particle (cpSRP) machinery to study the flexible formation of PS-LHC supercomplexes. Intriguingly, we found that impaired Chl b biosynthesis in chlorina1-2 (ch1-2) led to preferentially stabilized LHCI rather than LHCII, while the contents of both LHCI and LHCII were equally depressed in the cpSRP43-deficient mutant (chaos). In view of recent findings on the modified state transitions in LHCI-deficient mutants (Benson et al., 2015), the ch1-2 and chaos mutants were used to assess the influence of varying LHCI/LHCII antenna size on state transitions. Under state II conditions, LHCII-PSI supercomplexes were not formed in both ch1-2 and chaos plants. LHCII phosphorylation was drastically reduced in ch1-2, and the inactivation of STN7 correlates with the lack of state transitions. In contrast, phosphorylated LHCII in chaos was observed to be exclusively associated with PSII complexes, indicating a lack of mobile LHCII in chaos Thus, the comparative analysis of ch1-2 and chaos mutants provides new evidence for the flexible organization of LHCs and enhances our understanding of the reversible allocation of LHCII to the two photosystems.
光合作用中的状态转换使得捕光复合物II(LHCII)的可移动部分在状态I时动态分配到光系统II(PSII),在状态II时分配到光系统I(PSI)。在从状态I到状态II的转换过程中,LHCII被STN7磷酸化并与PSI结合,以有利于PSI的吸收截面。在这里,我们使用了在叶绿素(Chl)b生物合成或叶绿体信号识别颗粒(cpSRP)机制方面存在缺陷的拟南芥(Arabidopsis thaliana)突变体,来研究PS-LHC超复合物的灵活形成。有趣的是,我们发现chlorina1-2(ch1-2)中Chl b生物合成受损导致LHCI优先稳定,而不是LHCII,而在cpSRP43缺陷型突变体(chaos)中,LHCI和LHCII的含量均同等降低。鉴于最近关于LHCI缺陷型突变体中状态转换改变的研究结果(Benson等人,2015年),ch1-2和chaos突变体被用于评估不同LHCI/LHCII天线大小对状态转换的影响。在状态II条件下,ch1-2和chaos植株中均未形成LHCII-PSI超复合物。ch1-2中LHCII磷酸化急剧降低,并且STN7的失活与状态转换的缺乏相关。相反,在chaos中观察到磷酸化的LHCII仅与PSII复合物相关,表明chaos中缺乏可移动的LHCII。因此,对ch1-2和chaos突变体的比较分析为LHCs的灵活组织提供了新证据,并增强了我们对LHCII向两个光系统可逆分配的理解。