Suppr超能文献

人脑随年龄增长的DNA甲基化模式的组合识别。

Combinatorial identification of DNA methylation patterns over age in the human brain.

作者信息

Torabi Moghadam Behrooz, Dabrowski Michal, Kaminska Bozena, Grabherr Manfred G, Komorowski Jan

机构信息

Department of Cell and Molecular Biology, Computational and Systems Biology, Uppsala University, Uppsala, Sweden.

Laboratory of Bioinformatics, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.

出版信息

BMC Bioinformatics. 2016 Sep 23;17(1):393. doi: 10.1186/s12859-016-1259-3.

Abstract

BACKGROUND

DNA methylation plays a key role in developmental processes, which is reflected in changing methylation patterns at specific CpG sites over the lifetime of an individual. The underlying mechanisms are complex and possibly affect multiple genes or entire pathways.

RESULTS

We applied a multivariate approach to identify combinations of CpG sites that undergo modifications when transitioning between developmental stages. Monte Carlo feature selection produced a list of ranked and statistically significant CpG sites, while rule-based models allowed for identifying particular methylation changes in these sites. Our rule-based classifier reports combinations of CpG sites, together with changes in their methylation status in the form of easy-to-read IF-THEN rules, which allows for identification of the genes associated with the underlying sites.

CONCLUSION

We utilized machine learning and statistical methods to discretize decision class (age) values to get a general pattern of methylation changes over the lifespan. The CpG sites present in the significant rules were annotated to genes involved in brain formation, general development, as well as genes linked to cancer and Alzheimer's disease.

摘要

背景

DNA甲基化在发育过程中起关键作用,这体现在个体一生中特定CpG位点甲基化模式的变化上。其潜在机制复杂,可能影响多个基因或整个信号通路。

结果

我们应用多变量方法来识别在发育阶段转换时发生修饰的CpG位点组合。蒙特卡罗特征选择产生了一份排名且具有统计学意义的CpG位点列表,而基于规则的模型则能够识别这些位点中特定的甲基化变化。我们基于规则的分类器报告CpG位点组合,以及它们甲基化状态的变化,形式为易于阅读的“如果-那么”规则,这使得能够识别与潜在位点相关的基因。

结论

我们利用机器学习和统计方法对决策类(年龄)值进行离散化,以获得一生中甲基化变化的一般模式。重要规则中存在的CpG位点被注释到参与脑形成、一般发育的基因,以及与癌症和阿尔茨海默病相关的基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e80d/5034667/8024d4f34d64/12859_2016_1259_Fig1_HTML.jpg

相似文献

1
Combinatorial identification of DNA methylation patterns over age in the human brain.
BMC Bioinformatics. 2016 Sep 23;17(1):393. doi: 10.1186/s12859-016-1259-3.
2
Adult porcine genome-wide DNA methylation patterns support pigs as a biomedical model.
BMC Genomics. 2015 Oct 5;16:743. doi: 10.1186/s12864-015-1938-x.
3
Identification of DNA Methylation Signature and Rules for SARS-CoV-2 Associated with Age.
Front Biosci (Landmark Ed). 2022 Jun 27;27(7):204. doi: 10.31083/j.fbl2707204.
4
Genome wide classification and characterisation of CpG sites in cancer and normal cells.
Comput Biol Med. 2016 Jan 1;68:57-66. doi: 10.1016/j.compbiomed.2015.09.023. Epub 2015 Oct 23.
5
Predicting methylation status of CpG islands in the human brain.
Bioinformatics. 2006 Sep 15;22(18):2204-9. doi: 10.1093/bioinformatics/btl377. Epub 2006 Jul 12.
6
Identification of methylation signatures and rules for predicting the severity of SARS-CoV-2 infection with machine learning methods.
Front Microbiol. 2022 Sep 23;13:1007295. doi: 10.3389/fmicb.2022.1007295. eCollection 2022.
7
Characterization and machine learning prediction of allele-specific DNA methylation.
Genomics. 2015 Dec;106(6):331-9. doi: 10.1016/j.ygeno.2015.09.007. Epub 2015 Sep 25.
8
Detecting Brain Structure-Specific Methylation Signatures and Rules for Alzheimer's Disease.
Front Neurosci. 2022 May 2;16:895181. doi: 10.3389/fnins.2022.895181. eCollection 2022.
9
Aging-associated DNA methylation changes in middle-aged individuals: the Young Finns study.
BMC Genomics. 2016 Feb 9;17:103. doi: 10.1186/s12864-016-2421-z.

引用本文的文献

1
Epigenetic disruptions in the offspring hypothalamus in response to maternal infection.
Gene. 2024 Jun 5;910:148329. doi: 10.1016/j.gene.2024.148329. Epub 2024 Feb 29.
3
Determination of epigenetic age through DNA methylation of NPTX2 gene using buccal scrapes: A pilot study.
J Forensic Dent Sci. 2019 Sep-Dec;11(3):147-152. doi: 10.4103/jfo.jfds_29_19. Epub 2020 Jun 3.
5
Analyzing DNA methylation patterns in subjects diagnosed with schizophrenia using machine learning methods.
J Psychiatr Res. 2019 Jul;114:41-47. doi: 10.1016/j.jpsychires.2019.04.001. Epub 2019 Apr 2.
6
Genome-Wide Epigenetic Characterization of Tissues from Three Germ Layers Isolated from Sheep Fetuses.
Front Genet. 2017 Sep 4;8:115. doi: 10.3389/fgene.2017.00115. eCollection 2017.
7
PiiL: visualization of DNA methylation and gene expression data in gene pathways.
BMC Genomics. 2017 Aug 2;18(1):571. doi: 10.1186/s12864-017-3950-9.

本文引用的文献

2
Evaluation of DNA methylation markers and their potential to predict human aging.
Electrophoresis. 2015 Aug;36(15):1775-80. doi: 10.1002/elps.201500137. Epub 2015 Jul 14.
4
Ciruvis: a web-based tool for rule networks and interaction detection using rule-based classifiers.
BMC Bioinformatics. 2014 May 12;15:139. doi: 10.1186/1471-2105-15-139.
5
Mammalian epigenetic mechanisms.
IUBMB Life. 2014 Apr;66(4):240-56. doi: 10.1002/iub.1264. Epub 2014 Apr 5.
6
F-box only protein 2 (Fbxo2) regulates amyloid precursor protein levels and processing.
J Biol Chem. 2014 Mar 7;289(10):7038-7048. doi: 10.1074/jbc.M113.515056. Epub 2014 Jan 27.
7
DNA methylation age of human tissues and cell types.
Genome Biol. 2013;14(10):R115. doi: 10.1186/gb-2013-14-10-r115.
8
A DNA methylation prognostic signature of glioblastoma: identification of NPTX2-PTEN-NF-κB nexus.
Cancer Res. 2013 Nov 15;73(22):6563-73. doi: 10.1158/0008-5472.CAN-13-0298. Epub 2013 Sep 27.
9
Switching from MAPK-dependent to MAPK-independent repression of the sodium-iodide symporter in 2D and 3D cultured normal thyroid cells.
Mol Cell Endocrinol. 2013 Dec 5;381(1-2):241-54. doi: 10.1016/j.mce.2013.08.006. Epub 2013 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验