Chemical Biology Division, CSIR- Indian Institute of Chemical Technology (IICT), Tarnaka, Uppal Road, Hyderabad 500007, India.
Chemical Biology Division, CSIR- Indian Institute of Chemical Technology (IICT), Tarnaka, Uppal Road, Hyderabad 500007, India.
Biochim Biophys Acta Mol Basis Dis. 2017 Jan;1863(1):152-164. doi: 10.1016/j.bbadis.2016.09.014. Epub 2016 Sep 21.
Cerebral ischemic stroke is one of the leading causes of death and disability worldwide. Therapeutic interventions to minimize ischemia-induced neural damage are limited due to poor understanding of molecular mechanisms mediating complex pathophysiology in stroke. Recently, epigenetic mechanisms mostly histone lysine (K) acetylation and deacetylation have been implicated in ischemic brain damage and have expanded the dimensions of potential therapeutic intervention to the systemic/local administration of histone deacetylase inhibitors. However, the role of other epigenetic mechanisms such as histone lysine methylation and demethylation in stroke-induced damage and subsequent recovery process is elusive. Here, we established an Internal Carotid Artery Occlusion (ICAO) model in CD1 mouse that resulted in mild to moderate level of ischemic damage to the striatum, as suggested by magnetic resonance imaging (MRI), TUNEL and histopathological staining along with an evaluation of neurological deficit score (NDS), grip strength and rotarod performance. The molecular investigations show dysregulation of a number of histone lysine methylases (KMTs) and few of histone lysine demethylases (KDMs) post-ICAO with significant global attenuation in the transcriptionally repressive epigenetic mark H3K9me2 in the striatum. Administration of Dimethyloxalylglycine (DMOG), an inhibitor of KDM4 or JMJD2 class of histone lysine demethylases, significantly ameliorated stroke-induced NDS by restoring perturbed H3K9me2 levels in the ischemia-affected striatum. Overall, these results highlight the novel role of epigenetic regulatory mechanisms controlling the epigenetic mark H3K9me2 in mediating the stroke-induced striatal damage and subsequent repair following mild to moderate cerebral ischemia.
脑缺血性中风是全球范围内导致死亡和残疾的主要原因之一。由于对介导中风复杂病理生理学的分子机制了解甚少,因此治疗干预措施有限,无法最大限度地减少缺血引起的神经损伤。最近,表观遗传机制(主要是组蛋白赖氨酸(K)乙酰化和去乙酰化)已被牵涉到缺血性脑损伤中,并将潜在治疗干预的维度扩展到全身性/局部给予组蛋白去乙酰化酶抑制剂。然而,其他表观遗传机制(如组蛋白赖氨酸甲基化和去甲基化)在中风引起的损伤及其随后的恢复过程中的作用尚不清楚。在这里,我们在 CD1 小鼠中建立了颈内动脉闭塞(ICAO)模型,磁共振成像(MRI)、TUNEL 和组织病理学染色以及神经功能缺损评分(NDS)、握力和旋转棒性能评估表明,该模型导致纹状体出现轻度至中度缺血性损伤。分子研究表明,ICAO 后许多组蛋白赖氨酸甲基转移酶(KMTs)和少数组蛋白赖氨酸去甲基酶(KDMs)失调,纹状体中转录抑制性表观遗传标记 H3K9me2 的整体水平显著降低。组蛋白赖氨酸去甲基酶 KDM4 或 JMJD2 类的抑制剂二甲基草酰甘氨酸(DMOG)的给药显著改善了中风引起的 NDS,通过恢复缺血纹状体中紊乱的 H3K9me2 水平来实现。总的来说,这些结果强调了表观遗传调控机制控制表观遗传标记 H3K9me2 在介导轻度至中度脑缺血后中风引起的纹状体损伤和随后修复中的新作用。