Titov Sergei E, Demenkov Pavel S, Ivanov Mikhail K, Malakhina Ekaterina S, Poloz Tatiana L, Tsivlikova Elena V, Ganzha Maria S, Shevchenko Sergei P, Gulyaeva Lyudmila F, Kolesnikov Nikolay N
Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
Oncol Rep. 2016 Nov;36(5):2501-2510. doi: 10.3892/or.2016.5113. Epub 2016 Sep 20.
Fine needle aspiration cytology (FNAC) is currently the method of choice for malignancy prediction in thyroid nodules. Nevertheless, in some cases the interpretation of FNAC results may be problematic due to limitations of the method. The expression level of some microRNAs changes with the development of thyroid tumors, and its quantitation can be used to refine the FNAC results. For this quantitation to be reliable, the obtained data must be adequately normalized. Currently, no reference genes are universally recognized for quantitative assessments of microRNAs in thyroid nodules. The aim of the present study was the selection and validation of such reference genes. Expression of 800 microRNAs in 5 paired samples of thyroid surgical material corresponding to different histotypes of tumors was analyzed using Nanostring technology and four of these (hsa-miR-151a-3p, -197-3p, -99a-5p and -214-3p) with the relatively low variation coefficient were selected. The possibility of use of the selected microRNAs and their combination as references was estimated by RT-qPCR on a sampling of cytological smears: benign (n=226), atypia of undetermined significance (n=9), suspicious for follicular neoplasm (n=61), suspicious for malignancy (n=19), medullary thyroid carcinoma (MTC) (n=32), papillary thyroid carcinoma (PTC) (n=54) and non-diagnostic material (ND) (n=34). In order to assess the expression stability of the references, geNorm algorithm was used. The maximum stability was observed for the normalization factor obtained by the combination of all 4 microRNAs. Further validation of the complex normalizer and individual selected microRNAs was performed using 5 different classification methods on 3 groups of FNAC smears from the analyzed batch: benign neoplasms, MTC and PTC. In all cases, the use of the complex classifier resulted in the reduced number of errors. On using the complex microRNA normalizer, the decision-tree method C4.5 makes it possible to distinguish between malignant and benign thyroid neoplasms in cytological smears with high overall accuracy (>91%).
细针穿刺细胞学检查(FNAC)是目前预测甲状腺结节恶性肿瘤的首选方法。然而,在某些情况下,由于该方法的局限性,FNAC结果的解读可能存在问题。一些微小RNA的表达水平会随着甲状腺肿瘤的发展而变化,其定量分析可用于完善FNAC结果。为使这种定量分析可靠,所获得的数据必须进行充分的标准化。目前,在甲状腺结节中对微小RNA进行定量评估时,尚无普遍认可的内参基因。本研究的目的是筛选并验证此类内参基因。使用纳米串技术分析了5对对应不同肿瘤组织学类型的甲状腺手术材料样本中800种微小RNA的表达情况,并选择了其中变异系数相对较低的4种(hsa-miR-151a-3p、-197-3p、-99a-5p和-214-3p)。通过对细胞学涂片样本进行逆转录定量聚合酶链反应(RT-qPCR),评估了所选微小RNA及其组合作为内参的可能性:良性(n=226)、意义未明的非典型性病变(n=9)、可疑滤泡性肿瘤(n=61)、可疑恶性肿瘤(n=19)、甲状腺髓样癌(MTC)(n=32)、甲状腺乳头状癌(PTC)(n=54)和非诊断性材料(ND)(n=34)。为评估内参的表达稳定性,使用了geNorm算法。观察到由所有4种微小RNA组合得到的标准化因子具有最大稳定性。使用5种不同分类方法对分析批次中的3组FNAC涂片(良性肿瘤、MTC和PTC)进一步验证了复合标准化因子和单个所选微小RNA。在所有情况下,使用复合分类器均减少了错误数量。使用复合微小RNA标准化因子时,决策树方法C4.5能够以较高的总体准确率(>91%)区分细胞学涂片中的恶性和良性甲状腺肿瘤。