Park Joongkyu, Chávez Andrés E, Mineur Yann S, Morimoto-Tomita Megumi, Lutzu Stefano, Kim Kwang S, Picciotto Marina R, Castillo Pablo E, Tomita Susumu
Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.
Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile.
Neuron. 2016 Oct 5;92(1):75-83. doi: 10.1016/j.neuron.2016.09.002. Epub 2016 Sep 22.
Protein phosphorylation is an essential step for the expression of long-term potentiation (LTP), a long-lasting, activity-dependent strengthening of synaptic transmission widely regarded as a cellular mechanism underlying learning and memory. At the core of LTP is the synaptic insertion of AMPA receptors (AMPARs) triggered by the NMDA receptor-dependent activation of Ca/calmodulin-dependent protein kinase II (CaMKII). However, the CaMKII substrate that increases AMPAR-mediated transmission during LTP remains elusive. Here, we identify the hippocampus-enriched TARPγ-8, but not TARPγ-2/3/4, as a critical CaMKII substrate for LTP. We found that LTP induction increases TARPγ-8 phosphorylation, and that CaMKII-dependent enhancement of AMPAR-mediated transmission requires CaMKII phosphorylation sites of TARPγ-8. Moreover, LTP and memory formation, but not basal transmission, are significantly impaired in mice lacking CaMKII phosphorylation sites of TARPγ-8. Together, these findings demonstrate that TARPγ-8 is a crucial mediator of CaMKII-dependent LTP and therefore a molecular target that controls synaptic plasticity and associated cognitive functions.
蛋白质磷酸化是长时程增强(LTP)表达的关键步骤,LTP是一种持久的、依赖活动的突触传递增强,被广泛认为是学习和记忆的细胞机制。LTP的核心是由NMDA受体依赖性激活钙/钙调蛋白依赖性蛋白激酶II(CaMKII)触发的AMPA受体(AMPARs)的突触插入。然而,在LTP期间增加AMPAR介导的传递的CaMKII底物仍然不清楚。在这里,我们确定富含海马的TARPγ-8,而不是TARPγ-2/3/4,是LTP的关键CaMKII底物。我们发现LTP诱导增加TARPγ-8磷酸化,并且CaMKII依赖性增强AMPAR介导的传递需要TARPγ-8的CaMKII磷酸化位点。此外,在缺乏TARPγ-8的CaMKII磷酸化位点的小鼠中,LTP和记忆形成受到显著损害,但基础传递不受影响。总之,这些发现表明TARPγ-8是CaMKII依赖性LTP的关键介质,因此是控制突触可塑性和相关认知功能的分子靶点。