Yang Jun, Ma Rui-Ning, Dong Jia-Min, Hu Shu-Qun, Liu Yong, Yan Jing-Zhi
Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Jiangsu 221004, China.
Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Jiangsu 221004, China.
Neuroscience. 2024 Jan 9;536:131-142. doi: 10.1016/j.neuroscience.2023.11.016. Epub 2023 Nov 21.
GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs) inserted into postsynaptic membranes are key to the process of long-term potentiation (LTP). Some evidence has shown that 4.1N plays a critical role in the membrane trafficking of AMPARs. However, the underlying mechanism behind this is still unclear. We investigated the role of 4.1N-mediated membrane trafficking of AMPARs during theta-burst stimulation long-term potentiation (TBS-LTP), to illustrate the molecular mechanism behind LTP.
LTP was induced by TBS in rat hippocampal CA1 neuron. Tat-GluA1 (MPR), which disrupts the association of 4.1N-GluA1, and autocamtide-2-inhibitory peptide, myristoylated (Myr-AIP), a CaMKII antagonist, were used to explore the role of 4.1N in the AMPARs trafficking during TBS-induced LTP. Immunoprecipitation (IP) and immunoblotting (IB)were used to detect protein expression, phosphorylation, and the interaction of p-CaMKII-4.1N-GluA1.
We found that Myr-AIP attenuated increases of p-CaMKII (T286), p-GluA1 (ser831), and 4.1N phosphorylation after TBS-LTP, and decreased the association of p-CaMKII-4.1N-GluA1, along with the expression of GluA1, at postsynaptic densities during TBS-LTP. We also designed interfering peptides to disrupt the interaction between 4.1N and GluA1, which showed that Tat-GluA1 (MPR) or Myr-AIP inhibited TBS-LTP and attenuated increases of GluA1 at postsynaptic sites, while Tat-GluA1 (MPR) or Myr-AIP had no effects on miniature excitatory postsynaptic currents (mEPSCs) in non-stimulated hippocampal CA1 neurons.
Active CaMKII enhanced the phosphorylation of 4.1N and facilitated the association of p-CaMKII with 4.1N-GluA1, which in turn resulted in GluA1 trafficking during TBS-LTP. The association of 4.1N-GluA1 is required for LTP, but not for basal synaptic transmission.
插入突触后膜的含GluA1的α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体(AMPARs)是长时程增强(LTP)过程的关键。一些证据表明,4.1N在AMPARs的膜转运中起关键作用。然而,其潜在机制仍不清楚。我们研究了4.1N介导的AMPARs膜转运在θ波爆发刺激长时程增强(TBS-LTP)过程中的作用,以阐明LTP背后的分子机制。
在大鼠海马CA1神经元中通过TBS诱导LTP。使用破坏4.1N-GluA1结合的Tat-GluA1(MPR)和CaMKII拮抗剂肉豆蔻酰化自磷酸化钙调蛋白2抑制肽(Myr-AIP)来探讨4.1N在TBS诱导的LTP过程中对AMPARs转运的作用。采用免疫沉淀(IP)和免疫印迹(IB)检测蛋白质表达、磷酸化以及p-CaMKII-4.1N-GluA1的相互作用。
我们发现Myr-AIP减弱了TBS-LTP后p-CaMKII(T286)、p-GluA1(ser831)和4.1N磷酸化的增加,并降低了TBS-LTP期间突触后致密物处p-CaMKII-4.1N-GluA1的结合以及GluA1的表达。我们还设计了干扰肽来破坏4.1N与GluA1之间的相互作用,结果表明Tat-GluA1(MPR)或Myr-AIP抑制TBS-LTP并减弱突触后位点GluA1的增加,而Tat-GluA1(MPR)或Myr-AIP对未受刺激的海马CA1神经元中的微小兴奋性突触后电流(mEPSCs)没有影响。
活性CaMKII增强4.1N的磷酸化并促进p-CaMKII与4.1N-GluA1的结合,进而导致TBS-LTP期间GluA1的转运。4.1N-GluA1的结合是LTP所必需的,但对基础突触传递不是必需的。