Suppr超能文献

基于参数化等待时间分布确定处方持续时间。

Determining prescription durations based on the parametric waiting time distribution.

作者信息

Støvring Henrik, Pottegård Anton, Hallas Jesper

机构信息

Biostatistics, Department of Public Health, Aarhus University, Aarhus, Denmark.

Clinical Pharmacology, Department of Public Health, University of Southern Denmark, Odense, Denmark.

出版信息

Pharmacoepidemiol Drug Saf. 2016 Dec;25(12):1451-1459. doi: 10.1002/pds.4114. Epub 2016 Sep 26.

Abstract

PURPOSE

The purpose of the study is to develop a method to estimate the duration of single prescriptions in pharmacoepidemiological studies when the single prescription duration is not available.

METHODS

We developed an estimation algorithm based on maximum likelihood estimation of a parametric two-component mixture model for the waiting time distribution (WTD). The distribution component for prevalent users estimates the forward recurrence density (FRD), which is related to the distribution of time between subsequent prescription redemptions, the inter-arrival density (IAD), for users in continued treatment. We exploited this to estimate percentiles of the IAD by inversion of the estimated FRD and defined the duration of a prescription as the time within which 80% of current users will have presented themselves again. Statistical properties were examined in simulation studies, and the method was applied to empirical data for four model drugs: non-steroidal anti-inflammatory drugs (NSAIDs), warfarin, bendroflumethiazide, and levothyroxine.

RESULTS

Simulation studies found negligible bias when the data-generating model for the IAD coincided with the FRD used in the WTD estimation (Log-Normal). When the IAD consisted of a mixture of two Log-Normal distributions, but was analyzed with a single Log-Normal distribution, relative bias did not exceed 9%. Using a Log-Normal FRD, we estimated prescription durations of 117, 91, 137, and 118 days for NSAIDs, warfarin, bendroflumethiazide, and levothyroxine, respectively. Similar results were found with a Weibull FRD.

CONCLUSIONS

The algorithm allows valid estimation of single prescription durations, especially when the WTD reliably separates current users from incident users, and may replace ad-hoc decision rules in automated implementations. Copyright © 2016 John Wiley & Sons, Ltd.

摘要

目的

本研究的目的是开发一种方法,用于在无法获得单张处方持续时间时,在药物流行病学研究中估计单张处方的持续时间。

方法

我们基于等待时间分布(WTD)的参数化双组分混合模型的最大似然估计开发了一种估计算法。现患使用者的分布成分估计向前复发密度(FRD),其与后续处方取药之间的时间分布相关,即持续治疗使用者的到达间隔密度(IAD)。我们利用这一点通过估计的FRD的反演来估计IAD的百分位数,并将处方持续时间定义为80%的当前使用者再次就诊的时间范围。在模拟研究中检验了统计特性,并将该方法应用于四种模型药物的经验数据:非甾体抗炎药(NSAIDs)、华法林、苄氟噻嗪和左甲状腺素。

结果

模拟研究发现,当IAD的数据生成模型与WTD估计中使用的FRD(对数正态分布)一致时,偏差可忽略不计。当IAD由两个对数正态分布的混合组成,但用单个对数正态分布进行分析时,相对偏差不超过9%。使用对数正态FRD,我们分别估计NSAIDs、华法林、苄氟噻嗪和左甲状腺素的处方持续时间为117天、91天、137天和118天。使用威布尔FRD也得到了类似的结果。

结论

该算法能够有效估计单张处方的持续时间,特别是当WTD可靠地将现患使用者与新发病使用者区分开时,并且可以在自动化实施中取代临时决策规则。版权所有©2016约翰威立父子有限公司。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验