Støvring Henrik, Pottegård Anton, Hallas Jesper
Biostatistics, Department of Public Health, Aarhus University, Aarhus, Denmark.
Clinical Pharmacology and Pharmacy, Department of Public Health, University of Southern Denmark, Odense, Denmark.
Pharmacoepidemiol Drug Saf. 2017 Aug;26(8):900-908. doi: 10.1002/pds.4216. Epub 2017 May 3.
The study aimed to develop an automated method to estimate prescription durations in pharmacoepidemiological studies that may depend on patient and redemption characteristics.
We developed an estimation algorithm based on maximum likelihood estimation for the reverse waiting time distribution (WTD), which is the distribution of time from the last prescription of each patient within a time window to the end of the time window. The reverse WTD consists of two distinctly different components: one component for prevalent users and one for patients stopping treatment. We extended the model to allow parameters of the reverse WTD to depend on linear combinations of covariates to obtain estimates and confidence intervals for percentiles of the inter-arrival density (time from one prescription to the subsequent). We applied the method to redemptions of warfarin, using the amount of drug filled, patient sex and patient age as covariates.
The estimated prescription durations increased with redeemed amount and age. Women generally had longer prescription durations, which increased more with age than men. For 70-year-old women redeeming 300+ pills, we predicted a 95th percentile of the inter-arrival density of 225 (95%CI: 201, 249) days. For 50-year-old men redeeming 100 pills, the corresponding prediction was 97 (88, 106) days.
The algorithm allows estimation of prescription durations based on the reverse WTD, which can depend upon observed covariates. Statistical uncertainty intervals and tests allow statistical inference on the influence of observed patient and prescription characteristics. The method may replace ad hoc decision rules. Copyright © 2017 John Wiley & Sons, Ltd.
本研究旨在开发一种自动化方法,用于在药物流行病学研究中估计可能取决于患者和配药特征的处方持续时间。
我们基于最大似然估计开发了一种用于反向等待时间分布(WTD)的估计算法,反向等待时间分布是指在一个时间窗口内,每个患者最后一次处方到该时间窗口结束的时间分布。反向WTD由两个明显不同的部分组成:一部分用于现患使用者,另一部分用于停止治疗的患者。我们扩展了该模型,使反向WTD的参数取决于协变量的线性组合,以获得到达间隔密度(从一张处方到下一张处方的时间)百分位数的估计值和置信区间。我们将该方法应用于华法林的配药情况,将配药量、患者性别和患者年龄作为协变量。
估计的处方持续时间随配药量和年龄增加。女性的处方持续时间通常更长,且随年龄增长的幅度大于男性。对于领取300多片药的70岁女性,我们预测到达间隔密度的第95百分位数为225天(95%置信区间:201, 249)。对于领取100片药的50岁男性,相应的预测值为97天(88, 106)。
该算法允许基于反向WTD估计处方持续时间,其可能取决于观察到的协变量。统计不确定区间和检验允许对观察到的患者和处方特征的影响进行统计推断。该方法可能会取代临时决策规则。版权所有© 2017约翰威立父子有限公司。