Brocke Ekaterina, Bhalla Upinder S, Djurfeldt Mikael, Hellgren Kotaleski Jeanette, Hanke Michael
Science for Life Laboratory, Computational Science and Technology, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden; National Centre for Biological SciencesBangalore, India; Manipal UniversityManipal, India.
National Centre for Biological Sciences Bangalore, India.
Front Comput Neurosci. 2016 Sep 12;10:97. doi: 10.3389/fncom.2016.00097. eCollection 2016.
Multiscale modeling and simulations in neuroscience is gaining scientific attention due to its growing importance and unexplored capabilities. For instance, it can help to acquire better understanding of biological phenomena that have important features at multiple scales of time and space. This includes synaptic plasticity, memory formation and modulation, homeostasis. There are several ways to organize multiscale simulations depending on the scientific problem and the system to be modeled. One of the possibilities is to simulate different components of a multiscale system simultaneously and exchange data when required. The latter may become a challenging task for several reasons. First, the components of a multiscale system usually span different spatial and temporal scales, such that rigorous analysis of possible coupling solutions is required. Then, the components can be defined by different mathematical formalisms. For certain classes of problems a number of coupling mechanisms have been proposed and successfully used. However, a strict mathematical theory is missing in many cases. Recent work in the field has not so far investigated artifacts that may arise during coupled integration of different approximation methods. Moreover, in neuroscience, the coupling of widely used numerical fixed step size solvers may lead to unexpected inefficiency. In this paper we address the question of possible numerical artifacts that can arise during the integration of a coupled system. We develop an efficient strategy to couple the components comprising a multiscale test problem in neuroscience. We introduce an efficient coupling method based on the second-order backward differentiation formula (BDF2) numerical approximation. The method uses an adaptive step size integration with an error estimation proposed by Skelboe (2000). The method shows a significant advantage over conventional fixed step size solvers used in neuroscience for similar problems. We explore different coupling strategies that define the organization of computations between system components. We study the importance of an appropriate approximation of exchanged variables during the simulation. The analysis shows a substantial impact of these aspects on the solution accuracy in the application to our multiscale neuroscientific test problem. We believe that the ideas presented in the paper may essentially contribute to the development of a robust and efficient framework for multiscale brain modeling and simulations in neuroscience.
神经科学中的多尺度建模与模拟因其日益增长的重要性和尚未开发的能力而受到科学界的关注。例如,它有助于更好地理解在时间和空间的多个尺度上具有重要特征的生物现象。这包括突触可塑性、记忆形成与调节、内稳态。根据科学问题和要建模的系统,有几种组织多尺度模拟的方法。一种可能性是同时模拟多尺度系统的不同组件,并在需要时交换数据。由于几个原因,后者可能成为一项具有挑战性的任务。首先,多尺度系统的组件通常跨越不同的空间和时间尺度,因此需要对可能的耦合解决方案进行严格分析。然后,组件可以由不同的数学形式定义。对于某些类别的问题,已经提出并成功使用了一些耦合机制。然而,在许多情况下缺少严格的数学理论。该领域最近的工作到目前为止尚未研究在不同近似方法的耦合积分过程中可能出现的伪像。此外,在神经科学中,广泛使用的数值固定步长求解器的耦合可能导致意想不到的低效率。在本文中,我们解决了耦合系统积分过程中可能出现的数值伪像问题。我们开发了一种有效的策略来耦合构成神经科学中多尺度测试问题的组件。我们引入了一种基于二阶向后差分公式(BDF2)数值近似的有效耦合方法。该方法使用自适应步长积分以及Skelboe(2000)提出的误差估计。与神经科学中用于类似问题的传统固定步长求解器相比,该方法显示出显著优势。我们探索了定义系统组件之间计算组织的不同耦合策略。我们研究了模拟过程中交换变量的适当近似的重要性。分析表明,这些方面对我们多尺度神经科学测试问题应用中的解精度有重大影响。我们相信本文提出的想法可能对神经科学中用于多尺度脑建模与模拟的强大而高效的框架的发展做出重要贡献。