Fundamental Chemistry, Federal University of Pernambuco , Recife, Pernambuco 50740-670, Brazil.
Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev , Sede Boqer Campus, 84990 Midreshet Ben-Gurion, Israel.
Nano Lett. 2016 Oct 12;16(10):6709-6715. doi: 10.1021/acs.nanolett.6b03860. Epub 2016 Sep 29.
Despite the need for molecularly smooth self-assembled monolayers (SAMs) on silicon dioxide surfaces (the most common dielectric surface), current techniques are limited to nonideal silane grafting. Here, we show unique bioinspired zwitterionic molecules forming a molecularly smooth and uniformly thin SAM in "water" in <1 min on various dielectric surfaces, which enables a dip-coating process that is essential for organic electronics to become reality. This monomolecular layer leads to high mobility of organic field-effect transistors (OFETs) based on various organic semiconductors and source/drain electrodes. A combination of experimental and computational techniques confirms strong adsorption (W > 20 mJ m), uniform thickness (∼0.5 or ∼1 nm) and orientation (all catechol head groups facing the oxide surface) of the "monomolecular" layers. This robust (strong adsorption), rapid, and green SAM represents a promising advancement toward the next generation of nanofabrication compared to the current nonuniform and inconsistent polysiloxane-based SAM involving toxic chemicals, long processing time (>10 h), or heat (>80 °C).
尽管需要在二氧化硅表面(最常见的介电表面)上形成分子平滑的自组装单层(SAM),但目前的技术仅限于不理想的硅烷接枝。在这里,我们展示了独特的仿生两性离子分子,它们在“水中”能够在<1 分钟内在各种介电表面上形成分子平滑且均匀的超薄 SAM,从而使浸涂工艺成为现实,这对于有机电子学至关重要。这种单分子层使基于各种有机半导体和源/漏电极的有机场效应晶体管(OFET)具有高迁移率。实验和计算技术的结合证实了强吸附(W > 20 mJ m)、均匀厚度(0.5 或1nm)和取向(所有儿茶酚头基朝向氧化物表面)的“单分子”层。与目前涉及有毒化学物质、长处理时间(>10 小时)或高温(>80°C)的非均匀和不一致的聚硅氧烷基 SAM 相比,这种稳健(强吸附)、快速且环保的 SAM 代表了下一代纳米制造的有希望的进展。