Lee Du-Yeong, Lee Seung-Eun, Shim Tae-Hun, Park Jea-Gun
Department of Electronics and Computer Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
Nanoscale Res Lett. 2016 Dec;11(1):433. doi: 10.1186/s11671-016-1637-9. Epub 2016 Sep 27.
For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co2Fe6B2 free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the MgO tunneling barrier from a body-centered cubic (b.c.c) crystallized layer into a mixture of b.c.c, face-centered cubic, and amorphous layers and rapidly decreased the tunneling-magnetoresistance (TMR) ratio. The p-MTJ spin valve with a nanoscale-thick top Co2Fe6B2 free layer could prevent the Pt atoms diffusing into the MgO tunneling barrier during ex situ annealing at 400 °C because of non-necessity of a Pt buffer layer, demonstrating the TMR ratio of ~143 %.
对于具有纳米级厚度底部Co2Fe6B2自由层且在400°C下进行非原位退火的垂直磁隧道结(p-MTJ)自旋阀(其已被用作常见的p-MTJ结构),Pt缓冲层的Pt原子扩散到MgO隧道势垒中。这将MgO隧道势垒从体心立方(b.c.c)结晶层转变为b.c.c、面心立方和非晶层的混合物,并迅速降低了隧道磁电阻(TMR)比率。具有纳米级厚度顶部Co2Fe6B2自由层的p-MTJ自旋阀由于不需要Pt缓冲层,可在400°C非原位退火期间防止Pt原子扩散到MgO隧道势垒中,其TMR比率约为143%。