Suppr超能文献

中枢神经系统损伤后继发性脑损伤中的线粒体分裂与融合

Mitochondrial fission and fusion in secondary brain damage after CNS insults.

作者信息

Balog Justin, Mehta Suresh L, Vemuganti Raghu

机构信息

Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.

William S. Middleton Veterans Administration Hospital, Madison, WI, USA.

出版信息

J Cereb Blood Flow Metab. 2016 Dec;36(12):2022-2033. doi: 10.1177/0271678X16671528. Epub 2016 Sep 27.

Abstract

Mitochondria are dynamically active organelles, regulated through fission and fusion events to continuously redistribute them across axons, dendrites, and synapses of neurons to meet bioenergetics requirements and to control various functions, including cell proliferation, calcium buffering, neurotransmission, oxidative stress, and apoptosis. However, following acute or chronic injury to CNS, altered expression and function of proteins that mediate fission and fusion lead to mitochondrial dynamic imbalance. Particularly, if the fission is abnormally increased through pro-fission mediators such as Drp1, mitochondrial function will be impaired and mitochondria will become susceptible to insertion of proapototic proteins. This leads to the formation of mitochondrial transition pore, which eventually triggers apoptosis. Thus, mitochondrial dysfunction is a major promoter of neuronal death and secondary brain damage after an insult. This review discusses the implications of mitochondrial dynamic imbalance in neuronal death after acute and chronic CNS insults.

摘要

线粒体是动态活跃的细胞器,通过裂变和融合事件进行调节,以不断地在神经元的轴突、树突和突触间重新分布,以满足生物能量需求并控制各种功能,包括细胞增殖、钙缓冲、神经传递、氧化应激和细胞凋亡。然而,在中枢神经系统受到急性或慢性损伤后,介导裂变和融合的蛋白质的表达和功能发生改变,导致线粒体动态失衡。特别是,如果通过诸如动力相关蛋白1(Drp1)等促裂变介质使裂变异常增加,线粒体功能将受损,线粒体将易于插入促凋亡蛋白。这导致线粒体通透性转换孔的形成,最终触发细胞凋亡。因此,线粒体功能障碍是损伤后神经元死亡和继发性脑损伤的主要促成因素。本综述讨论了线粒体动态失衡在急性和慢性中枢神经系统损伤后神经元死亡中的影响。

相似文献

1
Mitochondrial fission and fusion in secondary brain damage after CNS insults.
J Cereb Blood Flow Metab. 2016 Dec;36(12):2022-2033. doi: 10.1177/0271678X16671528. Epub 2016 Sep 27.
2
The cyclophilin D/Drp1 axis regulates mitochondrial fission contributing to oxidative stress-induced mitochondrial dysfunctions in SH-SY5Y cells.
Biochem Biophys Res Commun. 2017 Jan 29;483(1):765-771. doi: 10.1016/j.bbrc.2016.12.068. Epub 2016 Dec 18.
3
Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity.
Neurobiol Dis. 2016 Jun;90:3-19. doi: 10.1016/j.nbd.2015.10.011. Epub 2015 Oct 19.
4
Altered Mitochondrial Dynamics and TBI Pathophysiology.
Front Syst Neurosci. 2016 Mar 30;10:29. doi: 10.3389/fnsys.2016.00029. eCollection 2016.
6
Mitochondrial dynamics and cell death in heart failure.
Heart Fail Rev. 2016 Mar;21(2):123-36. doi: 10.1007/s10741-016-9530-2.
7
Mitochondrial dynamics in neuronal injury, development and plasticity.
J Cell Sci. 2017 Feb 15;130(4):671-681. doi: 10.1242/jcs.171017. Epub 2017 Feb 2.
9
The Imbalance of Astrocytic Mitochondrial Dynamics Following Blast-Induced Traumatic Brain Injury.
Biomedicines. 2023 Jan 24;11(2):329. doi: 10.3390/biomedicines11020329.
10

引用本文的文献

3
DNA methylation and hydroxymethylation dynamics in the aging brain and its impact on ischemic stroke.
Neurochem Int. 2025 Sep;188:106007. doi: 10.1016/j.neuint.2025.106007. Epub 2025 Jun 11.
4
Mitochondrial dynamics reveal potential to facilitate axonal regeneration after spinal cord injury.
J Transl Med. 2025 Jun 2;23(1):617. doi: 10.1186/s12967-025-06611-2.
5
6
Mitochondrial quality control disorder in neurodegenerative disorders: Potential and advantages of traditional Chinese medicines.
J Pharm Anal. 2025 Apr;15(4):101146. doi: 10.1016/j.jpha.2024.101146. Epub 2024 Nov 14.
7
DRP1, fission and apoptosis.
Cell Death Discov. 2025 Apr 7;11(1):150. doi: 10.1038/s41420-025-02458-0.
8
Organelle symphony: Nuclear factor erythroid 2-related factor 2 and nuclear factor-kappa B in stroke pathobiology.
Neural Regen Res. 2026 Apr 1;21(4):1483-1496. doi: 10.4103/NRR.NRR-D-24-01404. Epub 2025 Mar 25.
9
Sexual Dimorphism of Ethanol-Induced Mitochondrial Dynamics in Purkinje Cells.
Int J Mol Sci. 2024 Dec 22;25(24):13714. doi: 10.3390/ijms252413714.
10
Nanoparticle targeting strategies for traumatic brain injury.
J Neural Eng. 2024 Dec 20;21(6). doi: 10.1088/1741-2552/ad995b.

本文引用的文献

1
Poststroke Induction of α-Synuclein Mediates Ischemic Brain Damage.
J Neurosci. 2016 Jun 29;36(26):7055-65. doi: 10.1523/JNEUROSCI.1241-16.2016.
2
Altered Mitochondrial Dynamics and TBI Pathophysiology.
Front Syst Neurosci. 2016 Mar 30;10:29. doi: 10.3389/fnsys.2016.00029. eCollection 2016.
3
Glycogen Synthase Kinase 3β Influences Injury Following Cerebral Ischemia/Reperfusion in Rats.
Int J Biol Sci. 2016 Feb 29;12(5):518-31. doi: 10.7150/ijbs.13918. eCollection 2016.
4
Drp-1, a potential therapeutic target for brain ischaemic stroke.
Br J Pharmacol. 2016 May;173(10):1665-77. doi: 10.1111/bph.13468. Epub 2016 Apr 7.
5
Metabolic regulation of mitochondrial dynamics.
J Cell Biol. 2016 Feb 15;212(4):379-87. doi: 10.1083/jcb.201511036. Epub 2016 Feb 8.
6
Bax assembles into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis.
EMBO J. 2016 Feb 15;35(4):402-13. doi: 10.15252/embj.201592789. Epub 2016 Jan 18.
9
Influence of Opa1 Mutation on Survival and Function of Retinal Ganglion Cells.
Invest Ophthalmol Vis Sci. 2015 Jul;56(8):4835-45. doi: 10.1167/iovs.15-16743.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验