Balog Justin, Mehta Suresh L, Vemuganti Raghu
Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.
William S. Middleton Veterans Administration Hospital, Madison, WI, USA.
J Cereb Blood Flow Metab. 2016 Dec;36(12):2022-2033. doi: 10.1177/0271678X16671528. Epub 2016 Sep 27.
Mitochondria are dynamically active organelles, regulated through fission and fusion events to continuously redistribute them across axons, dendrites, and synapses of neurons to meet bioenergetics requirements and to control various functions, including cell proliferation, calcium buffering, neurotransmission, oxidative stress, and apoptosis. However, following acute or chronic injury to CNS, altered expression and function of proteins that mediate fission and fusion lead to mitochondrial dynamic imbalance. Particularly, if the fission is abnormally increased through pro-fission mediators such as Drp1, mitochondrial function will be impaired and mitochondria will become susceptible to insertion of proapototic proteins. This leads to the formation of mitochondrial transition pore, which eventually triggers apoptosis. Thus, mitochondrial dysfunction is a major promoter of neuronal death and secondary brain damage after an insult. This review discusses the implications of mitochondrial dynamic imbalance in neuronal death after acute and chronic CNS insults.
线粒体是动态活跃的细胞器,通过裂变和融合事件进行调节,以不断地在神经元的轴突、树突和突触间重新分布,以满足生物能量需求并控制各种功能,包括细胞增殖、钙缓冲、神经传递、氧化应激和细胞凋亡。然而,在中枢神经系统受到急性或慢性损伤后,介导裂变和融合的蛋白质的表达和功能发生改变,导致线粒体动态失衡。特别是,如果通过诸如动力相关蛋白1(Drp1)等促裂变介质使裂变异常增加,线粒体功能将受损,线粒体将易于插入促凋亡蛋白。这导致线粒体通透性转换孔的形成,最终触发细胞凋亡。因此,线粒体功能障碍是损伤后神经元死亡和继发性脑损伤的主要促成因素。本综述讨论了线粒体动态失衡在急性和慢性中枢神经系统损伤后神经元死亡中的影响。