Suppr超能文献

利用表面性质改变肽组装体的免疫原性

Switching the Immunogenicity of Peptide Assemblies Using Surface Properties.

作者信息

Wen Yi, Waltman Amelia, Han Huifang, Collier Joel H

机构信息

Biomedical Engineering Department, Duke University , Durham, North Carolina 27708, United States.

Department of Surgery, University of Chicago , Chicago, Illinois 60637, United States.

出版信息

ACS Nano. 2016 Oct 25;10(10):9274-9286. doi: 10.1021/acsnano.6b03409. Epub 2016 Oct 3.

Abstract

Biomaterials created from supramolecular peptides, proteins, and their derivatives have been receiving increasing interest for both immunological applications, such as vaccines and immunotherapies, as well as ostensibly nonimmunological applications, such as therapeutic delivery or tissue engineering. However, simple rules for either maximizing immunogenicity or abolishing it have yet to be elucidated, even though immunogenicity is a prime consideration for the design of any supramolecular biomaterial intended for use in vivo. Here, we investigated a range of physicochemical properties of fibrillized peptide biomaterials, identifying negative surface charge as a means for completely abolishing antibody and T cell responses against them in mice, even when they display a competent epitope. The work was facilitated by the modularity of the materials, which enabled the generation of a set of co-assembled fibrillar peptide materials with broad ranges of surface properties. It was found that negative surface charge, provided via negatively charged amino acid residues, prevented T cell and antibody responses to antigen-carrying assemblies because it prevented uptake of the materials by antigen-presenting cells (APCs), which in turn prevented presentation of the epitope peptide in the APCs' major histocompatibility class II molecules. Conversely, positive surface charge augmented the uptake of fibrillized peptides by APCs. These findings suggest that some surface characteristics, such as extensive negative charge, should be avoided in vaccine design using supramolecular peptide assemblies. More importantly, it provides a strategy to switch off potentially problematic immunogenicity for using these materials in nonimmunological applications.

摘要

由超分子肽、蛋白质及其衍生物制成的生物材料在免疫应用(如疫苗和免疫疗法)以及表面上非免疫应用(如治疗性递送或组织工程)中越来越受到关注。然而,即使免疫原性是设计任何用于体内的超分子生物材料的首要考虑因素,但最大化免疫原性或消除免疫原性的简单规则尚未阐明。在这里,我们研究了纤维化肽生物材料的一系列物理化学性质,确定负表面电荷是在小鼠中完全消除针对它们的抗体和T细胞反应的一种手段,即使它们显示出有效的表位。材料的模块化促进了这项工作,这使得能够生成一组具有广泛表面性质的共组装纤维状肽材料。研究发现,通过带负电荷的氨基酸残基提供的负表面电荷可防止T细胞和抗体对抗抗原组装体的反应,因为它阻止了抗原呈递细胞(APC)对材料的摄取,这反过来又阻止了表位肽在APC的主要组织相容性II类分子中的呈递。相反,正表面电荷增加了APC对纤维化肽的摄取。这些发现表明,在使用超分子肽组装体进行疫苗设计时应避免一些表面特征,如广泛的负电荷。更重要的是,它提供了一种策略,用于在非免疫应用中使用这些材料时消除潜在的有问题的免疫原性。

相似文献

1
Switching the Immunogenicity of Peptide Assemblies Using Surface Properties.
ACS Nano. 2016 Oct 25;10(10):9274-9286. doi: 10.1021/acsnano.6b03409. Epub 2016 Oct 3.
2
Modulating adaptive immune responses to peptide self-assemblies.
ACS Nano. 2012 Feb 28;6(2):1557-64. doi: 10.1021/nn204530r. Epub 2012 Jan 30.
4
Practical Considerations in the Design and Use of Immunologically Active Fibrillar Peptide Assemblies.
Methods Mol Biol. 2018;1777:233-248. doi: 10.1007/978-1-4939-7811-3_14.
6
Randomized peptide assemblies for enhancing immune responses to nanomaterials.
Biomaterials. 2021 Jun;273:120825. doi: 10.1016/j.biomaterials.2021.120825. Epub 2021 Apr 15.
8
Self-adjuvanting vaccine against group A streptococcus: application of fibrillized peptide and immunostimulatory lipid as adjuvant.
Bioorg Med Chem. 2014 Nov 15;22(22):6401-8. doi: 10.1016/j.bmc.2014.09.042. Epub 2014 Sep 26.
10
Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering.
Adv Drug Deliv Rev. 2017 Feb;110-111:169-187. doi: 10.1016/j.addr.2016.06.013. Epub 2016 Jun 26.

引用本文的文献

1
Roles of biomaterials in modulating the innate immune response in ocular therapy.
Front Drug Deliv. 2023 Feb 15;3:1077253. doi: 10.3389/fddev.2023.1077253. eCollection 2023.
2
Self-Assembling Aromatic Peptide Amphiphile Fibers for Multivalent Display of Enzymatically Linked Antigenic Proteins.
ACS Appl Mater Interfaces. 2025 Aug 6;17(31):44240-44248. doi: 10.1021/acsami.5c10222. Epub 2025 Jul 23.
3
Effect of Tyrosine-Containing Self-Assembling β-Sheet Peptides on Macrophage Polarization and Inflammatory Response.
ACS Appl Mater Interfaces. 2025 May 14;17(19):27740-27758. doi: 10.1021/acsami.4c19900. Epub 2025 Apr 15.
5
Anti-Cytokine Active Immunotherapy Based on Supramolecular Peptides for Alleviating IL-1β-Mediated Inflammation.
Adv Healthc Mater. 2025 Feb;14(5):e2401444. doi: 10.1002/adhm.202401444. Epub 2024 Aug 7.
6
Porous silicon and silica carriers for delivery of peptide therapeutics.
Drug Deliv Transl Res. 2024 Dec;14(12):3549-3567. doi: 10.1007/s13346-024-01609-7. Epub 2024 May 31.
7
Supramolecular Peptide Self-Assemblies Facilitate Oral Immunization.
ACS Biomater Sci Eng. 2024 May 13;10(5):3041-3056. doi: 10.1021/acsbiomaterials.4c00525. Epub 2024 Apr 16.
8
Understanding multicomponent low molecular weight gels from gelators to networks.
J Adv Res. 2025 Mar;69:91-106. doi: 10.1016/j.jare.2024.03.028. Epub 2024 Apr 1.
9
Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment.
Signal Transduct Target Ther. 2024 Feb 21;9(1):34. doi: 10.1038/s41392-024-01745-z.
10
Elevating the potential of CAR-T cell therapy in solid tumors: exploiting biomaterials-based delivery techniques.
Front Bioeng Biotechnol. 2024 Jan 18;11:1320807. doi: 10.3389/fbioe.2023.1320807. eCollection 2023.

本文引用的文献

2
Local retention of antibodies in vivo with an injectable film embedded with a fluorogen-activating protein.
J Control Release. 2016 May 28;230:1-12. doi: 10.1016/j.jconrel.2016.03.032. Epub 2016 Mar 31.
3
Enzyme-Instructed Self-Assembly of Small D-Peptides as a Multiple-Step Process for Selectively Killing Cancer Cells.
J Am Chem Soc. 2016 Mar 23;138(11):3813-23. doi: 10.1021/jacs.5b13541. Epub 2016 Mar 11.
4
Tissue-Factor Targeted Peptide Amphiphile Nanofibers as an Injectable Therapy To Control Hemorrhage.
ACS Nano. 2016 Jan 26;10(1):899-909. doi: 10.1021/acsnano.5b06025. Epub 2015 Dec 30.
5
Nanoparticle surface charge impacts distribution, uptake and lymph node trafficking by pulmonary antigen-presenting cells.
Nanomedicine. 2016 Apr;12(3):677-687. doi: 10.1016/j.nano.2015.11.002. Epub 2015 Dec 1.
6
Thermal stability of self-assembled peptide vaccine materials.
Acta Biomater. 2016 Jan;30:62-71. doi: 10.1016/j.actbio.2015.11.019. Epub 2015 Nov 14.
7
Shape and size-dependent immune response to antigen-carrying nanoparticles.
J Control Release. 2015 Dec 28;220(Pt A):141-148. doi: 10.1016/j.jconrel.2015.09.069. Epub 2015 Oct 3.
8
Beta Hairpin Peptide Hydrogels as an Injectable Solid Vehicle for Neurotrophic Growth Factor Delivery.
Biomacromolecules. 2015 Sep 14;16(9):2672-83. doi: 10.1021/acs.biomac.5b00541. Epub 2015 Aug 17.
9
MMP-9 triggered micelle-to-fibre transitions for slow release of doxorubicin.
Biomater Sci. 2015 Feb;3(2):246-9. doi: 10.1039/c4bm00297k. Epub 2014 Oct 28.
10
Supramolecular peptide vaccines: tuning adaptive immunity.
Curr Opin Immunol. 2015 Aug;35:73-9. doi: 10.1016/j.coi.2015.06.007. Epub 2015 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验