Suppr超能文献

一个以上随机因素的实验:设计、分析模型和统计功效。

Experiments with More Than One Random Factor: Designs, Analytic Models, and Statistical Power.

机构信息

Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309; email:

Department of Psychology, University of Texas at Austin, Austin, Texas 78712; email:

出版信息

Annu Rev Psychol. 2017 Jan 3;68:601-625. doi: 10.1146/annurev-psych-122414-033702. Epub 2016 Sep 28.

Abstract

Traditional methods of analyzing data from psychological experiments are based on the assumption that there is a single random factor (normally participants) to which generalization is sought. However, many studies involve at least two random factors (e.g., participants and the targets to which they respond, such as words, pictures, or individuals). The application of traditional analytic methods to the data from such studies can result in serious bias in testing experimental effects. In this review, we develop a comprehensive typology of designs involving two random factors, which may be either crossed or nested, and one fixed factor, condition. We present appropriate linear mixed models for all designs and develop effect size measures. We provide the tools for power estimation for all designs. We then discuss issues of design choice, highlighting power and feasibility considerations. Our goal is to encourage appropriate analytic methods that produce replicable results for studies involving new samples of both participants and targets.

摘要

传统的心理实验数据分析方法基于这样一种假设,即存在一个单一的随机因素(通常是参与者),可以对其进行推广。然而,许多研究涉及至少两个随机因素(例如,参与者和他们所响应的目标,如单词、图片或个体)。将传统的分析方法应用于此类研究的数据可能会导致实验效果测试中的严重偏差。在这篇综述中,我们开发了一种涉及两个随机因素的综合设计分类法,这些因素可以是交叉的,也可以是嵌套的,还有一个固定因素,即条件。我们为所有设计提供了适当的线性混合模型,并开发了效应量度量方法。我们为所有设计提供了功效估计的工具。然后,我们讨论了设计选择的问题,重点介绍了功效和可行性考虑因素。我们的目标是鼓励使用适当的分析方法,为涉及参与者和目标新样本的研究产生可重复的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验